summaryrefslogtreecommitdiff
path: root/python-h11.spec
blob: 089763f041ed52acbe42289a7d0b7a7aa98b9c9b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
%global _empty_manifest_terminate_build 0
Name:		python-h11
Version:	0.14.0
Release:	1
Summary:	A pure-Python, bring-your-own-I/O implementation of HTTP/1.1
License:	MIT
URL:		https://github.com/python-hyper/h11
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/f5/38/3af3d3633a34a3316095b39c8e8fb4853a28a536e55d347bd8d8e9a14b03/h11-0.14.0.tar.gz
BuildArch:	noarch

Requires:	python3-typing-extensions

%description
This is a little HTTP/1.1 library written from scratch in Python,
heavily inspired by `hyper-h2 <https://hyper-h2.readthedocs.io/>`_.
It's a "bring-your-own-I/O" library; h11 contains no IO code
whatsoever. This means you can hook h11 up to your favorite network
API, and that could be anything you want: synchronous, threaded,
asynchronous, or your own implementation of `RFC 6214
<https://tools.ietf.org/html/rfc6214>`_ -- h11 won't judge you.
(Compare this to the current state of the art, where every time a `new
network API <https://trio.readthedocs.io/>`_ comes along then someone
gets to start over reimplementing the entire HTTP protocol from
scratch.) Cory Benfield made an `excellent blog post describing the
benefits of this approach
<https://lukasa.co.uk/2015/10/The_New_Hyper/>`_, or if you like video
then here's his `PyCon 2016 talk on the same theme
<https://www.youtube.com/watch?v=7cC3_jGwl_U>`_.
This also means that h11 is not immediately useful out of the box:
it's a toolkit for building programs that speak HTTP, not something
that could directly replace ``requests`` or ``twisted.web`` or
whatever. But h11 makes it much easier to implement something like
``requests`` or ``twisted.web``.
At a high level, working with h11 goes like this:
1) First, create an ``h11.Connection`` object to track the state of a
   single HTTP/1.1 connection.
2) When you read data off the network, pass it to
   ``conn.receive_data(...)``; you'll get back a list of objects
   representing high-level HTTP "events".
3) When you want to send a high-level HTTP event, create the
   corresponding "event" object and pass it to ``conn.send(...)``;
   this will give you back some bytes that you can then push out
   through the network.
For example, a client might instantiate and then send a
``h11.Request`` object, then zero or more ``h11.Data`` objects for the
request body (e.g., if this is a POST), and then a
``h11.EndOfMessage`` to indicate the end of the message. Then the
server would then send back a ``h11.Response``, some ``h11.Data``, and
its own ``h11.EndOfMessage``. If either side violates the protocol,
you'll get a ``h11.ProtocolError`` exception.
h11 is suitable for implementing both servers and clients, and has a
pleasantly symmetric API: the events you send as a client are exactly
the ones that you receive as a server and vice-versa.
`Here's an example of a tiny HTTP client
<https://github.com/python-hyper/h11/blob/master/examples/basic-client.py>`_
It also has `a fine manual <https://h11.readthedocs.io/>`_.

%package -n python3-h11
Summary:	A pure-Python, bring-your-own-I/O implementation of HTTP/1.1
Provides:	python-h11
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-h11
This is a little HTTP/1.1 library written from scratch in Python,
heavily inspired by `hyper-h2 <https://hyper-h2.readthedocs.io/>`_.
It's a "bring-your-own-I/O" library; h11 contains no IO code
whatsoever. This means you can hook h11 up to your favorite network
API, and that could be anything you want: synchronous, threaded,
asynchronous, or your own implementation of `RFC 6214
<https://tools.ietf.org/html/rfc6214>`_ -- h11 won't judge you.
(Compare this to the current state of the art, where every time a `new
network API <https://trio.readthedocs.io/>`_ comes along then someone
gets to start over reimplementing the entire HTTP protocol from
scratch.) Cory Benfield made an `excellent blog post describing the
benefits of this approach
<https://lukasa.co.uk/2015/10/The_New_Hyper/>`_, or if you like video
then here's his `PyCon 2016 talk on the same theme
<https://www.youtube.com/watch?v=7cC3_jGwl_U>`_.
This also means that h11 is not immediately useful out of the box:
it's a toolkit for building programs that speak HTTP, not something
that could directly replace ``requests`` or ``twisted.web`` or
whatever. But h11 makes it much easier to implement something like
``requests`` or ``twisted.web``.
At a high level, working with h11 goes like this:
1) First, create an ``h11.Connection`` object to track the state of a
   single HTTP/1.1 connection.
2) When you read data off the network, pass it to
   ``conn.receive_data(...)``; you'll get back a list of objects
   representing high-level HTTP "events".
3) When you want to send a high-level HTTP event, create the
   corresponding "event" object and pass it to ``conn.send(...)``;
   this will give you back some bytes that you can then push out
   through the network.
For example, a client might instantiate and then send a
``h11.Request`` object, then zero or more ``h11.Data`` objects for the
request body (e.g., if this is a POST), and then a
``h11.EndOfMessage`` to indicate the end of the message. Then the
server would then send back a ``h11.Response``, some ``h11.Data``, and
its own ``h11.EndOfMessage``. If either side violates the protocol,
you'll get a ``h11.ProtocolError`` exception.
h11 is suitable for implementing both servers and clients, and has a
pleasantly symmetric API: the events you send as a client are exactly
the ones that you receive as a server and vice-versa.
`Here's an example of a tiny HTTP client
<https://github.com/python-hyper/h11/blob/master/examples/basic-client.py>`_
It also has `a fine manual <https://h11.readthedocs.io/>`_.

%package help
Summary:	Development documents and examples for h11
Provides:	python3-h11-doc
%description help
This is a little HTTP/1.1 library written from scratch in Python,
heavily inspired by `hyper-h2 <https://hyper-h2.readthedocs.io/>`_.
It's a "bring-your-own-I/O" library; h11 contains no IO code
whatsoever. This means you can hook h11 up to your favorite network
API, and that could be anything you want: synchronous, threaded,
asynchronous, or your own implementation of `RFC 6214
<https://tools.ietf.org/html/rfc6214>`_ -- h11 won't judge you.
(Compare this to the current state of the art, where every time a `new
network API <https://trio.readthedocs.io/>`_ comes along then someone
gets to start over reimplementing the entire HTTP protocol from
scratch.) Cory Benfield made an `excellent blog post describing the
benefits of this approach
<https://lukasa.co.uk/2015/10/The_New_Hyper/>`_, or if you like video
then here's his `PyCon 2016 talk on the same theme
<https://www.youtube.com/watch?v=7cC3_jGwl_U>`_.
This also means that h11 is not immediately useful out of the box:
it's a toolkit for building programs that speak HTTP, not something
that could directly replace ``requests`` or ``twisted.web`` or
whatever. But h11 makes it much easier to implement something like
``requests`` or ``twisted.web``.
At a high level, working with h11 goes like this:
1) First, create an ``h11.Connection`` object to track the state of a
   single HTTP/1.1 connection.
2) When you read data off the network, pass it to
   ``conn.receive_data(...)``; you'll get back a list of objects
   representing high-level HTTP "events".
3) When you want to send a high-level HTTP event, create the
   corresponding "event" object and pass it to ``conn.send(...)``;
   this will give you back some bytes that you can then push out
   through the network.
For example, a client might instantiate and then send a
``h11.Request`` object, then zero or more ``h11.Data`` objects for the
request body (e.g., if this is a POST), and then a
``h11.EndOfMessage`` to indicate the end of the message. Then the
server would then send back a ``h11.Response``, some ``h11.Data``, and
its own ``h11.EndOfMessage``. If either side violates the protocol,
you'll get a ``h11.ProtocolError`` exception.
h11 is suitable for implementing both servers and clients, and has a
pleasantly symmetric API: the events you send as a client are exactly
the ones that you receive as a server and vice-versa.
`Here's an example of a tiny HTTP client
<https://github.com/python-hyper/h11/blob/master/examples/basic-client.py>`_
It also has `a fine manual <https://h11.readthedocs.io/>`_.

%prep
%autosetup -n h11-0.14.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-h11 -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Mar 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.14.0-1
- Package Spec generated