1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
%global _empty_manifest_terminate_build 0
Name: python-hampel
Version: 0.0.5
Release: 1
Summary: Python implementation of the Hampel Filter
License: MIT License
URL: https://github.com/MichaelisTrofficus/hampel_filter
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/50/0c/a9c77ff9b7f3f907940f520274a3946ff66587f823e41b57c29ac33ed81d/hampel-0.0.5.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
%description
# Theory
The Hampel filter is generally used to detect anomalies in data with a timeseries structure. It basically consists of a sliding window of a parameterizable size. For each window, each observation will be compared with the Median Absolute Deviation (MAD). The observation will be considered an outlier in the case in which it exceeds the MAD by n times (the parameter n is also parameterizable). For more details, see the following Medium post as well as the Wikipedia entry on MAD.
https://medium.com/wwblog/clean-up-your-time-series-data-with-a-hampel-filter-58b0bb3ebb04
https://en.wikipedia.org/wiki/Median_absolute_deviation
# Install Package
To install the package execute the following command.
```
pip install hampel
```
# Usage
```
hampel(ts, window_size=5, n=3)
hampel(ts, window_size=5, n=3, imputation=True)
```
# Arguments
- **ts** - A pandas Series object representing the timeseries
- **window_size** - Total window size will be computed as 2*window_size + 1
- **n** - Threshold, default is 3 (Pearson's rule)
- **imputation** - If set to False, then the algorithm will be used for outlier detection.
If set to True, then the algorithm will also imput the outliers with the rolling median.
# Code Example
```
import matplotlib.pyplot as plt
import pandas as pd
from hampel import hampel
ts = pd.Series([1, 2, 1 , 1 , 1, 2, 13, 2, 1, 2, 15, 1, 2])
# Just outlier detection
outlier_indices = hampel(ts, window_size=5, n=3)
print("Outlier Indices: ", outlier_indices)
# Outlier Imputation with rolling median
ts_imputation = hampel(ts, window_size=5, n=3, imputation=True)
ts.plot(style="k-")
ts_imputation.plot(style="g-")
plt.show()
```
%package -n python3-hampel
Summary: Python implementation of the Hampel Filter
Provides: python-hampel
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-hampel
# Theory
The Hampel filter is generally used to detect anomalies in data with a timeseries structure. It basically consists of a sliding window of a parameterizable size. For each window, each observation will be compared with the Median Absolute Deviation (MAD). The observation will be considered an outlier in the case in which it exceeds the MAD by n times (the parameter n is also parameterizable). For more details, see the following Medium post as well as the Wikipedia entry on MAD.
https://medium.com/wwblog/clean-up-your-time-series-data-with-a-hampel-filter-58b0bb3ebb04
https://en.wikipedia.org/wiki/Median_absolute_deviation
# Install Package
To install the package execute the following command.
```
pip install hampel
```
# Usage
```
hampel(ts, window_size=5, n=3)
hampel(ts, window_size=5, n=3, imputation=True)
```
# Arguments
- **ts** - A pandas Series object representing the timeseries
- **window_size** - Total window size will be computed as 2*window_size + 1
- **n** - Threshold, default is 3 (Pearson's rule)
- **imputation** - If set to False, then the algorithm will be used for outlier detection.
If set to True, then the algorithm will also imput the outliers with the rolling median.
# Code Example
```
import matplotlib.pyplot as plt
import pandas as pd
from hampel import hampel
ts = pd.Series([1, 2, 1 , 1 , 1, 2, 13, 2, 1, 2, 15, 1, 2])
# Just outlier detection
outlier_indices = hampel(ts, window_size=5, n=3)
print("Outlier Indices: ", outlier_indices)
# Outlier Imputation with rolling median
ts_imputation = hampel(ts, window_size=5, n=3, imputation=True)
ts.plot(style="k-")
ts_imputation.plot(style="g-")
plt.show()
```
%package help
Summary: Development documents and examples for hampel
Provides: python3-hampel-doc
%description help
# Theory
The Hampel filter is generally used to detect anomalies in data with a timeseries structure. It basically consists of a sliding window of a parameterizable size. For each window, each observation will be compared with the Median Absolute Deviation (MAD). The observation will be considered an outlier in the case in which it exceeds the MAD by n times (the parameter n is also parameterizable). For more details, see the following Medium post as well as the Wikipedia entry on MAD.
https://medium.com/wwblog/clean-up-your-time-series-data-with-a-hampel-filter-58b0bb3ebb04
https://en.wikipedia.org/wiki/Median_absolute_deviation
# Install Package
To install the package execute the following command.
```
pip install hampel
```
# Usage
```
hampel(ts, window_size=5, n=3)
hampel(ts, window_size=5, n=3, imputation=True)
```
# Arguments
- **ts** - A pandas Series object representing the timeseries
- **window_size** - Total window size will be computed as 2*window_size + 1
- **n** - Threshold, default is 3 (Pearson's rule)
- **imputation** - If set to False, then the algorithm will be used for outlier detection.
If set to True, then the algorithm will also imput the outliers with the rolling median.
# Code Example
```
import matplotlib.pyplot as plt
import pandas as pd
from hampel import hampel
ts = pd.Series([1, 2, 1 , 1 , 1, 2, 13, 2, 1, 2, 15, 1, 2])
# Just outlier detection
outlier_indices = hampel(ts, window_size=5, n=3)
print("Outlier Indices: ", outlier_indices)
# Outlier Imputation with rolling median
ts_imputation = hampel(ts, window_size=5, n=3, imputation=True)
ts.plot(style="k-")
ts_imputation.plot(style="g-")
plt.show()
```
%prep
%autosetup -n hampel-0.0.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-hampel -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 25 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.5-1
- Package Spec generated
|