summaryrefslogtreecommitdiff
path: root/python-happytransformer.spec
blob: 91078040b714d8a0103f5454832084c7fe5aa4df (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
%global _empty_manifest_terminate_build 0
Name:		python-happytransformer
Version:	2.4.1
Release:	1
Summary:	Happy Transformer is an API built on top of Hugging Face's Transformer library that makes it easy to utilize state-of-the-art NLP models.
License:	Apache 2.0
URL:		https://github.com/EricFillion/happy-transformer
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/7a/1c/01318ece577d3a7fdd6d9103dc6dcc9eaf20312aef76a3158c399ec8a207/happytransformer-2.4.1.tar.gz
BuildArch:	noarch

Requires:	python3-torch
Requires:	python3-tqdm
Requires:	python3-transformers
Requires:	python3-datasets
Requires:	python3-sentencepiece
Requires:	python3-protobuf
Requires:	python3-dataclasses

%description
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) 
[![Downloads](https://pepy.tech/badge/happytransformer)](https://pepy.tech/project/happytransformer)
[![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](http://happytransformer.com)
![PyPI](https://img.shields.io/pypi/v/happytransformer)
[![](https://github.com/EricFillion/happy-transformer/workflows/build/badge.svg)](https://github.com/EricFillion/happy-transformer/actions)

# Happy Transformer 
**Documentation and news: [happytransformer.com](http://happytransformer.com)**

New Course: Create a text generation web app. Also learn how to fine-tune GPT-Neo [link](https://www.udemy.com/course/nlp-text-generation-python-web-app/?couponCode=LAUNCH)


Join our Discord server: [![Support Server](https://img.shields.io/discord/839263772312862740.svg?label=Discord&logo=Discord&colorB=7289da&style=?style=flat-square&logo=appveyor)](https://discord.gg/psVwe3wfTb)



![HappyTransformer](logo.png)

Happy Transformer is an package built on top of [Hugging Face's transformer library](https://huggingface.co/transformers/) that makes it easy to utilize state-of-the-art NLP models. 

## Features 

| Public Methods                     | Basic Usage  | Training   |
|------------------------------------|--------------|------------|
| Text Generation                    | ✔            | ✔          |
| Text Classification                | ✔            | ✔          | 
| Word Prediction                    | ✔            | ✔          |
| Question Answering                 | ✔            | ✔          | 
| Text-to-Text                       | ✔            | ✔          | 
| Next Sentence Prediction           | ✔            |            | 
| Token Classification               | ✔            |            | 

## Quick Start
```sh
pip install happytransformer
```

```python

from happytransformer import HappyWordPrediction
#--------------------------------------#
happy_wp = HappyWordPrediction()  # default uses distilbert-base-uncased
result = happy_wp.predict_mask("I think therefore I [MASK]")
print(result)  # [WordPredictionResult(token='am', score=0.10172799974679947)]
print(result[0].token)  # am
```

## Maintainers
- [Eric Fillion](https://github.com/ericfillion)  Lead Maintainer
- [Ted Brownlow](https://github.com/ted537) Maintainer

## Tutorials 
[Text generation with training (GPT-Neo)](https://youtu.be/GzHJ3NUVtV4)

[Text classification (training)](https://www.vennify.ai/train-text-classification-transformers/) 

[Text classification (hate speech detection)](https://youtu.be/jti2sPQYzeQ) 

[Text classification (sentiment analysis)](https://youtu.be/Ew72EAgM7FM)

[Word prediction with training (DistilBERT, RoBERTa)](https://youtu.be/AWe0PHsPc_M)

[Top T5 Models ](https://www.vennify.ai/top-t5-transformer-models/)

[Grammar Correction](https://www.vennify.ai/grammar-correction-python/)

[Fine-tune a Grammar Correction Model](https://www.vennify.ai/fine-tune-grammar-correction/)




%package -n python3-happytransformer
Summary:	Happy Transformer is an API built on top of Hugging Face's Transformer library that makes it easy to utilize state-of-the-art NLP models.
Provides:	python-happytransformer
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-happytransformer
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) 
[![Downloads](https://pepy.tech/badge/happytransformer)](https://pepy.tech/project/happytransformer)
[![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](http://happytransformer.com)
![PyPI](https://img.shields.io/pypi/v/happytransformer)
[![](https://github.com/EricFillion/happy-transformer/workflows/build/badge.svg)](https://github.com/EricFillion/happy-transformer/actions)

# Happy Transformer 
**Documentation and news: [happytransformer.com](http://happytransformer.com)**

New Course: Create a text generation web app. Also learn how to fine-tune GPT-Neo [link](https://www.udemy.com/course/nlp-text-generation-python-web-app/?couponCode=LAUNCH)


Join our Discord server: [![Support Server](https://img.shields.io/discord/839263772312862740.svg?label=Discord&logo=Discord&colorB=7289da&style=?style=flat-square&logo=appveyor)](https://discord.gg/psVwe3wfTb)



![HappyTransformer](logo.png)

Happy Transformer is an package built on top of [Hugging Face's transformer library](https://huggingface.co/transformers/) that makes it easy to utilize state-of-the-art NLP models. 

## Features 

| Public Methods                     | Basic Usage  | Training   |
|------------------------------------|--------------|------------|
| Text Generation                    | ✔            | ✔          |
| Text Classification                | ✔            | ✔          | 
| Word Prediction                    | ✔            | ✔          |
| Question Answering                 | ✔            | ✔          | 
| Text-to-Text                       | ✔            | ✔          | 
| Next Sentence Prediction           | ✔            |            | 
| Token Classification               | ✔            |            | 

## Quick Start
```sh
pip install happytransformer
```

```python

from happytransformer import HappyWordPrediction
#--------------------------------------#
happy_wp = HappyWordPrediction()  # default uses distilbert-base-uncased
result = happy_wp.predict_mask("I think therefore I [MASK]")
print(result)  # [WordPredictionResult(token='am', score=0.10172799974679947)]
print(result[0].token)  # am
```

## Maintainers
- [Eric Fillion](https://github.com/ericfillion)  Lead Maintainer
- [Ted Brownlow](https://github.com/ted537) Maintainer

## Tutorials 
[Text generation with training (GPT-Neo)](https://youtu.be/GzHJ3NUVtV4)

[Text classification (training)](https://www.vennify.ai/train-text-classification-transformers/) 

[Text classification (hate speech detection)](https://youtu.be/jti2sPQYzeQ) 

[Text classification (sentiment analysis)](https://youtu.be/Ew72EAgM7FM)

[Word prediction with training (DistilBERT, RoBERTa)](https://youtu.be/AWe0PHsPc_M)

[Top T5 Models ](https://www.vennify.ai/top-t5-transformer-models/)

[Grammar Correction](https://www.vennify.ai/grammar-correction-python/)

[Fine-tune a Grammar Correction Model](https://www.vennify.ai/fine-tune-grammar-correction/)




%package help
Summary:	Development documents and examples for happytransformer
Provides:	python3-happytransformer-doc
%description help
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0) 
[![Downloads](https://pepy.tech/badge/happytransformer)](https://pepy.tech/project/happytransformer)
[![Website shields.io](https://img.shields.io/website-up-down-green-red/http/shields.io.svg)](http://happytransformer.com)
![PyPI](https://img.shields.io/pypi/v/happytransformer)
[![](https://github.com/EricFillion/happy-transformer/workflows/build/badge.svg)](https://github.com/EricFillion/happy-transformer/actions)

# Happy Transformer 
**Documentation and news: [happytransformer.com](http://happytransformer.com)**

New Course: Create a text generation web app. Also learn how to fine-tune GPT-Neo [link](https://www.udemy.com/course/nlp-text-generation-python-web-app/?couponCode=LAUNCH)


Join our Discord server: [![Support Server](https://img.shields.io/discord/839263772312862740.svg?label=Discord&logo=Discord&colorB=7289da&style=?style=flat-square&logo=appveyor)](https://discord.gg/psVwe3wfTb)



![HappyTransformer](logo.png)

Happy Transformer is an package built on top of [Hugging Face's transformer library](https://huggingface.co/transformers/) that makes it easy to utilize state-of-the-art NLP models. 

## Features 

| Public Methods                     | Basic Usage  | Training   |
|------------------------------------|--------------|------------|
| Text Generation                    | ✔            | ✔          |
| Text Classification                | ✔            | ✔          | 
| Word Prediction                    | ✔            | ✔          |
| Question Answering                 | ✔            | ✔          | 
| Text-to-Text                       | ✔            | ✔          | 
| Next Sentence Prediction           | ✔            |            | 
| Token Classification               | ✔            |            | 

## Quick Start
```sh
pip install happytransformer
```

```python

from happytransformer import HappyWordPrediction
#--------------------------------------#
happy_wp = HappyWordPrediction()  # default uses distilbert-base-uncased
result = happy_wp.predict_mask("I think therefore I [MASK]")
print(result)  # [WordPredictionResult(token='am', score=0.10172799974679947)]
print(result[0].token)  # am
```

## Maintainers
- [Eric Fillion](https://github.com/ericfillion)  Lead Maintainer
- [Ted Brownlow](https://github.com/ted537) Maintainer

## Tutorials 
[Text generation with training (GPT-Neo)](https://youtu.be/GzHJ3NUVtV4)

[Text classification (training)](https://www.vennify.ai/train-text-classification-transformers/) 

[Text classification (hate speech detection)](https://youtu.be/jti2sPQYzeQ) 

[Text classification (sentiment analysis)](https://youtu.be/Ew72EAgM7FM)

[Word prediction with training (DistilBERT, RoBERTa)](https://youtu.be/AWe0PHsPc_M)

[Top T5 Models ](https://www.vennify.ai/top-t5-transformer-models/)

[Grammar Correction](https://www.vennify.ai/grammar-correction-python/)

[Fine-tune a Grammar Correction Model](https://www.vennify.ai/fine-tune-grammar-correction/)




%prep
%autosetup -n happytransformer-2.4.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-happytransformer -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 2.4.1-1
- Package Spec generated