summaryrefslogtreecommitdiff
path: root/python-haversine.spec
blob: 77f8c65e3c43d2a785d0da2cc50387ee76ae52cd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
%global _empty_manifest_terminate_build 0
Name:		python-haversine
Version:	2.8.0
Release:	1
Summary:	Calculate the distance between 2 points on Earth.
License:	MIT
URL:		https://github.com/mapado/haversine
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b9/6b/0a774af6a2eea772aa99e5fbc7af7711eba02ff0dee3e71838c1b5926ef5/haversine-2.8.0.tar.gz
BuildArch:	noarch


%description
# Haversine

Calculate the distance (in various units) between two points on Earth using their latitude and longitude.

## Installation

```sh
pip install haversine
```

## Usage

### Calculate the distance between Lyon and Paris

```python
from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # in kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71250609539814  # in miles

# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71250609539814  # in miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # in nautical miles
```

The lat/lon values need to be provided in degrees of the ranges [-90,90] (lat) and [-180,180] (lon).
If values are outside their ranges, an error will be raised. This can be avoided by automatic normalization via the `normalize` parameter.

The `haversine.Unit` enum contains all supported units:

```python
import haversine

print(tuple(haversine.Unit))
```

outputs

```text
(<Unit.KILOMETERS: 'km'>, <Unit.METERS: 'm'>, <Unit.MILES: 'mi'>,
 <Unit.NAUTICAL_MILES: 'nmi'>, <Unit.FEET: 'ft'>, <Unit.INCHES: 'in'>,
 <Unit.RADIANS: 'rad'>, <Unit.DEGREES: 'deg'>)
```

#### Note for radians and degrees

The radian and degrees returns the [great circle distance](https://en.wikipedia.org/wiki/Great-circle_distance) between two points on a sphere.

Notes:

- on a unit-sphere the angular distance in radians equals the distance between the two points on the sphere (definition of radians)
- When using "degree", this angle is just converted from radians to degrees

### Inverse Haversine Formula

Calculates a point from a given vector (distance and direction) and start point.
Currently explicitly supports both cardinal (north, east, south, west) and intercardinal (northeast, southeast, southwest, northwest) directions.
But also allows for explicit angles expressed in Radians.

## Example: Finding arbitary point from Paris

```python
from haversine import inverse_haversine, Direction
from math import pi
paris = (48.8567, 2.3508) # (lat, lon)
# Finding 32 km west of Paris
inverse_haversine(paris, 32, Direction.WEST)
# returns tuple (48.85587279023947, 1.9134085092836945)
# Finding 32 km southwest of Paris
inverse_haversine(paris, 32, pi * 1.25)
# returns tuple (48.65279552300661, 2.0427666779658806)
# Finding 50 miles north of Paris
inverse_haversine(paris, 50, Direction.NORTH, unit=Unit.MILES)
# returns tuple (49.58035791599536, 2.3508)
# Finding 10 nautical miles south of Paris
inverse_haversine(paris, 10, Direction.SOUTH, unit=Unit.NAUTICAL_MILES)
# returns tuple (48.690145868497645, 2.3508)
```

### Performance optimisation for distances between all points in two vectors

You will need to install [numpy](https://pypi.org/project/numpy/) in order to gain performance with vectors.
For optimal performance, you can turn off coordinate checking by adding `check=False` and install the optional packages [numba](https://pypi.org/project/numba/) and [icc_rt](https://pypi.org/project/icc_rt/).

You can then do this:

```python
from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])
```

It is generally slower to use `haversine_vector` to get distance between two points, but can be really fast to compare distances between two vectors.

### Combine matrix

You can generate a matrix of all combinations between coordinates in different vectors by setting `comb` parameter as True.

```python
from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
london = (51.509865, -0.118092)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, london], [paris, new_york], Unit.KILOMETERS, comb=True)

>> array([[ 392.21725956,  343.37455271],
 	  [6163.43638211, 5586.48447423]])
```

The output array from the example above returns the following table:

|        |       Paris       |       New York       |
| ------ | :---------------: | :------------------: |
| Lyon   |  Lyon <\-> Paris  |  Lyon <\-> New York  |
| London | London <\-> Paris | London <\-> New York |

By definition, if you have a vector _a_ with _n_ elements, and a vector _b_ with _m_ elements. The result matrix _M_ would be $n x m$ and a element M\[i,j\] from the matrix would be the distance between the ith coordinate from vector _a_ and jth coordinate with vector _b_.

## Contributing

Clone the project.

Install [pipenv](https://github.com/pypa/pipenv).

Run `pipenv install --dev`

Launch test with `pipenv run pytest`


%package -n python3-haversine
Summary:	Calculate the distance between 2 points on Earth.
Provides:	python-haversine
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-haversine
# Haversine

Calculate the distance (in various units) between two points on Earth using their latitude and longitude.

## Installation

```sh
pip install haversine
```

## Usage

### Calculate the distance between Lyon and Paris

```python
from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # in kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71250609539814  # in miles

# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71250609539814  # in miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # in nautical miles
```

The lat/lon values need to be provided in degrees of the ranges [-90,90] (lat) and [-180,180] (lon).
If values are outside their ranges, an error will be raised. This can be avoided by automatic normalization via the `normalize` parameter.

The `haversine.Unit` enum contains all supported units:

```python
import haversine

print(tuple(haversine.Unit))
```

outputs

```text
(<Unit.KILOMETERS: 'km'>, <Unit.METERS: 'm'>, <Unit.MILES: 'mi'>,
 <Unit.NAUTICAL_MILES: 'nmi'>, <Unit.FEET: 'ft'>, <Unit.INCHES: 'in'>,
 <Unit.RADIANS: 'rad'>, <Unit.DEGREES: 'deg'>)
```

#### Note for radians and degrees

The radian and degrees returns the [great circle distance](https://en.wikipedia.org/wiki/Great-circle_distance) between two points on a sphere.

Notes:

- on a unit-sphere the angular distance in radians equals the distance between the two points on the sphere (definition of radians)
- When using "degree", this angle is just converted from radians to degrees

### Inverse Haversine Formula

Calculates a point from a given vector (distance and direction) and start point.
Currently explicitly supports both cardinal (north, east, south, west) and intercardinal (northeast, southeast, southwest, northwest) directions.
But also allows for explicit angles expressed in Radians.

## Example: Finding arbitary point from Paris

```python
from haversine import inverse_haversine, Direction
from math import pi
paris = (48.8567, 2.3508) # (lat, lon)
# Finding 32 km west of Paris
inverse_haversine(paris, 32, Direction.WEST)
# returns tuple (48.85587279023947, 1.9134085092836945)
# Finding 32 km southwest of Paris
inverse_haversine(paris, 32, pi * 1.25)
# returns tuple (48.65279552300661, 2.0427666779658806)
# Finding 50 miles north of Paris
inverse_haversine(paris, 50, Direction.NORTH, unit=Unit.MILES)
# returns tuple (49.58035791599536, 2.3508)
# Finding 10 nautical miles south of Paris
inverse_haversine(paris, 10, Direction.SOUTH, unit=Unit.NAUTICAL_MILES)
# returns tuple (48.690145868497645, 2.3508)
```

### Performance optimisation for distances between all points in two vectors

You will need to install [numpy](https://pypi.org/project/numpy/) in order to gain performance with vectors.
For optimal performance, you can turn off coordinate checking by adding `check=False` and install the optional packages [numba](https://pypi.org/project/numba/) and [icc_rt](https://pypi.org/project/icc_rt/).

You can then do this:

```python
from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])
```

It is generally slower to use `haversine_vector` to get distance between two points, but can be really fast to compare distances between two vectors.

### Combine matrix

You can generate a matrix of all combinations between coordinates in different vectors by setting `comb` parameter as True.

```python
from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
london = (51.509865, -0.118092)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, london], [paris, new_york], Unit.KILOMETERS, comb=True)

>> array([[ 392.21725956,  343.37455271],
 	  [6163.43638211, 5586.48447423]])
```

The output array from the example above returns the following table:

|        |       Paris       |       New York       |
| ------ | :---------------: | :------------------: |
| Lyon   |  Lyon <\-> Paris  |  Lyon <\-> New York  |
| London | London <\-> Paris | London <\-> New York |

By definition, if you have a vector _a_ with _n_ elements, and a vector _b_ with _m_ elements. The result matrix _M_ would be $n x m$ and a element M\[i,j\] from the matrix would be the distance between the ith coordinate from vector _a_ and jth coordinate with vector _b_.

## Contributing

Clone the project.

Install [pipenv](https://github.com/pypa/pipenv).

Run `pipenv install --dev`

Launch test with `pipenv run pytest`


%package help
Summary:	Development documents and examples for haversine
Provides:	python3-haversine-doc
%description help
# Haversine

Calculate the distance (in various units) between two points on Earth using their latitude and longitude.

## Installation

```sh
pip install haversine
```

## Usage

### Calculate the distance between Lyon and Paris

```python
from haversine import haversine, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)

haversine(lyon, paris)
>> 392.2172595594006  # in kilometers

haversine(lyon, paris, unit=Unit.MILES)
>> 243.71250609539814  # in miles

# you can also use the string abbreviation for units:
haversine(lyon, paris, unit='mi')
>> 243.71250609539814  # in miles

haversine(lyon, paris, unit=Unit.NAUTICAL_MILES)
>> 211.78037755311516  # in nautical miles
```

The lat/lon values need to be provided in degrees of the ranges [-90,90] (lat) and [-180,180] (lon).
If values are outside their ranges, an error will be raised. This can be avoided by automatic normalization via the `normalize` parameter.

The `haversine.Unit` enum contains all supported units:

```python
import haversine

print(tuple(haversine.Unit))
```

outputs

```text
(<Unit.KILOMETERS: 'km'>, <Unit.METERS: 'm'>, <Unit.MILES: 'mi'>,
 <Unit.NAUTICAL_MILES: 'nmi'>, <Unit.FEET: 'ft'>, <Unit.INCHES: 'in'>,
 <Unit.RADIANS: 'rad'>, <Unit.DEGREES: 'deg'>)
```

#### Note for radians and degrees

The radian and degrees returns the [great circle distance](https://en.wikipedia.org/wiki/Great-circle_distance) between two points on a sphere.

Notes:

- on a unit-sphere the angular distance in radians equals the distance between the two points on the sphere (definition of radians)
- When using "degree", this angle is just converted from radians to degrees

### Inverse Haversine Formula

Calculates a point from a given vector (distance and direction) and start point.
Currently explicitly supports both cardinal (north, east, south, west) and intercardinal (northeast, southeast, southwest, northwest) directions.
But also allows for explicit angles expressed in Radians.

## Example: Finding arbitary point from Paris

```python
from haversine import inverse_haversine, Direction
from math import pi
paris = (48.8567, 2.3508) # (lat, lon)
# Finding 32 km west of Paris
inverse_haversine(paris, 32, Direction.WEST)
# returns tuple (48.85587279023947, 1.9134085092836945)
# Finding 32 km southwest of Paris
inverse_haversine(paris, 32, pi * 1.25)
# returns tuple (48.65279552300661, 2.0427666779658806)
# Finding 50 miles north of Paris
inverse_haversine(paris, 50, Direction.NORTH, unit=Unit.MILES)
# returns tuple (49.58035791599536, 2.3508)
# Finding 10 nautical miles south of Paris
inverse_haversine(paris, 10, Direction.SOUTH, unit=Unit.NAUTICAL_MILES)
# returns tuple (48.690145868497645, 2.3508)
```

### Performance optimisation for distances between all points in two vectors

You will need to install [numpy](https://pypi.org/project/numpy/) in order to gain performance with vectors.
For optimal performance, you can turn off coordinate checking by adding `check=False` and install the optional packages [numba](https://pypi.org/project/numba/) and [icc_rt](https://pypi.org/project/icc_rt/).

You can then do this:

```python
from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, lyon], [paris, new_york], Unit.KILOMETERS)

>> array([ 392.21725956, 6163.43638211])
```

It is generally slower to use `haversine_vector` to get distance between two points, but can be really fast to compare distances between two vectors.

### Combine matrix

You can generate a matrix of all combinations between coordinates in different vectors by setting `comb` parameter as True.

```python
from haversine import haversine_vector, Unit

lyon = (45.7597, 4.8422) # (lat, lon)
london = (51.509865, -0.118092)
paris = (48.8567, 2.3508)
new_york = (40.7033962, -74.2351462)

haversine_vector([lyon, london], [paris, new_york], Unit.KILOMETERS, comb=True)

>> array([[ 392.21725956,  343.37455271],
 	  [6163.43638211, 5586.48447423]])
```

The output array from the example above returns the following table:

|        |       Paris       |       New York       |
| ------ | :---------------: | :------------------: |
| Lyon   |  Lyon <\-> Paris  |  Lyon <\-> New York  |
| London | London <\-> Paris | London <\-> New York |

By definition, if you have a vector _a_ with _n_ elements, and a vector _b_ with _m_ elements. The result matrix _M_ would be $n x m$ and a element M\[i,j\] from the matrix would be the distance between the ith coordinate from vector _a_ and jth coordinate with vector _b_.

## Contributing

Clone the project.

Install [pipenv](https://github.com/pypa/pipenv).

Run `pipenv install --dev`

Launch test with `pipenv run pytest`


%prep
%autosetup -n haversine-2.8.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-haversine -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 2.8.0-1
- Package Spec generated