summaryrefslogtreecommitdiff
path: root/python-hecss.spec
blob: b28cf925de856877c88f5e4c7fb1785a746ff2ff (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
%global _empty_manifest_terminate_build 0
Name:		python-hecss
Version:	0.5.0.2
Release:	1
Summary:	High Efficiency Configuration Space Sampler
License:	GNU General Public License ver. 3
URL:		https://gitlab.com/jochym/hecss/tree/devel/
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/fb/67/a3a62e85a70be58d9a0a8090792a164ab5dcd7b7bca085b100e22acd90a8/hecss-0.5.0.2.tar.gz
BuildArch:	noarch

Requires:	python3-ase
Requires:	python3-spglib
Requires:	python3-tqdm
Requires:	python3-click
Requires:	python3-matplotlib
Requires:	python3-numpy
Requires:	python3-scipy
Requires:	python3-ipython

%description
# HECSS
> High Efficiency Configuration Space Sampler


[![PVersion Badge](https://img.shields.io/pypi/v/hecss.svg)](https://pypi.org/project/hecss/)
[![PDownloads Badge](https://img.shields.io/pypi/dm/hecss.svg)](https://pypi.org/project/hecss/)
[![CVersion Badge](https://anaconda.org/conda-forge/hecss/badges/version.svg)](https://anaconda.org/conda-forge/hecss)
[![Downloads Badge](https://anaconda.org/conda-forge/hecss/badges/downloads.svg)](https://anaconda.org/conda-forge/hecss)
[![License Badge](https://anaconda.org/jochym/hecss/badges/license.svg)](https://anaconda.org/jochym/hecss)

HECSS is a Markow chain Monte-Carlo, configuration space sampler using Metropolis-Hastings algorithm for probablity distribution sampling. It provides an alternative way to create representations of systems at thermal equilibrium without running a very expensive molecular dynamics simulation. The theoretical foundation of the code are presented in [SciPost Phys. 10, 129 (2021)](https://scipost.org/SciPostPhys.10.6.129) (short excerpt in [Background](https://jochym.gitlab.io/hecss/Background) in the [Documentation](https://jochym.gitlab.io/hecss/)). More detailed examples are included in the [LAMMPS](https://jochym.gitlab.io/hecss/LAMMPS_Tutorial) and [VASP](https://jochym.gitlab.io/hecss/VASP_Tutorial) tutorials.

If you use this software in published research please cite the above paper ([BibTeX](https://gitlab.com/jochym/hecss/-/raw/master/scipost.bib)) in your publication.

## A very short example

Minimal example using LAMMPS potential from the asap3 package and OpenKIM database. Here we will sample the thermodynamic distribution of 3C-SiC crystal at 300K. We start by importing required modules, define the crystal and energy/forces calculator, run the sampler and finally plot the energy distribution. 

```python
#asap
from ase.build import bulk
import asap3
from hecss.core import HECSS, select_asap_model
from hecss.monitor import plot_stats
```

Then we define the crystal and interaction model used in the calculation. In this case we use 3x3x3 supercell of the SiC crystal in zincblende structure and describe the interaction using LAMMPS potential from the OpenKIM database and ASAP3 implementation of the calculator.

```python
#asap
# model = 'Tersoff_LAMMPS_ErhartAlbe_2005_SiC__MO_903987585848_003'
model = select_asap_model('SiC')
cryst = bulk('SiC', crystalstructure='zincblende', a=4.38120844, cubic=True).repeat((3,3,3))
cryst.set_calculator(asap3.OpenKIMcalculator(model))
```

Then we define the sampler parameters (N -- number of samples, T -- temperature) and run it.

```python
#asap
T = 300
N = 1_000
samples = HECSS(cryst, asap3.OpenKIMcalculator(model), T).generate(N)
```

And finally we plot the histogram of the resulting energy distribution which corresponds to the thermal equilibrium distribution.

```python
#asap
plot_stats(samples, T)
```


    
![png](docs/images/output_9_0.png)
    


## Install

The HECSS package is avaliable on pypi and conda-forge additionally the package is present also in my personal anaconda channel (jochym). Installation is simple, but requires a number of other packages to be installed as well. Package menagers handle these dependencies automatically. 

### Install with pip
It is advisable to install in a dedicated virtual environment e.g.:
```
python3 -m venv venv
. venv/bin/activate
```
then install with `pip`:
```
pip install hecss
```

### Install with conda
Also installation with conda should be performed for dedicated or some other non-base environment. To create dedicated environment you can invoke `conda create`:
```
conda create -n hecss -c conda-forge hecss
```
or you can install in some working environment `venv`:
```
conda install -n venv -c conda-forge hecss
```

### Example data archive

The example subdirectory from the source may be downloaded directly from the source repository: [hecss-examples.zip](https://gitlab.com/jochym/hecss/-/archive/master/hecss-master.zip?path=example) 

### The source code

The source is published at the [Gitlab hecss repository](https://gitlab.com/jochym/hecss). 
You can access it with git (recommended, particularly if you want to contribute to the development):
```bash
git clone https://gitlab.com/jochym/hecss.git
```
or you can download the whole distribution as a zip archive: [hecss.zip](https://gitlab.com/jochym/hecss/-/archive/master/hecss-master.zip)


%package -n python3-hecss
Summary:	High Efficiency Configuration Space Sampler
Provides:	python-hecss
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-hecss
# HECSS
> High Efficiency Configuration Space Sampler


[![PVersion Badge](https://img.shields.io/pypi/v/hecss.svg)](https://pypi.org/project/hecss/)
[![PDownloads Badge](https://img.shields.io/pypi/dm/hecss.svg)](https://pypi.org/project/hecss/)
[![CVersion Badge](https://anaconda.org/conda-forge/hecss/badges/version.svg)](https://anaconda.org/conda-forge/hecss)
[![Downloads Badge](https://anaconda.org/conda-forge/hecss/badges/downloads.svg)](https://anaconda.org/conda-forge/hecss)
[![License Badge](https://anaconda.org/jochym/hecss/badges/license.svg)](https://anaconda.org/jochym/hecss)

HECSS is a Markow chain Monte-Carlo, configuration space sampler using Metropolis-Hastings algorithm for probablity distribution sampling. It provides an alternative way to create representations of systems at thermal equilibrium without running a very expensive molecular dynamics simulation. The theoretical foundation of the code are presented in [SciPost Phys. 10, 129 (2021)](https://scipost.org/SciPostPhys.10.6.129) (short excerpt in [Background](https://jochym.gitlab.io/hecss/Background) in the [Documentation](https://jochym.gitlab.io/hecss/)). More detailed examples are included in the [LAMMPS](https://jochym.gitlab.io/hecss/LAMMPS_Tutorial) and [VASP](https://jochym.gitlab.io/hecss/VASP_Tutorial) tutorials.

If you use this software in published research please cite the above paper ([BibTeX](https://gitlab.com/jochym/hecss/-/raw/master/scipost.bib)) in your publication.

## A very short example

Minimal example using LAMMPS potential from the asap3 package and OpenKIM database. Here we will sample the thermodynamic distribution of 3C-SiC crystal at 300K. We start by importing required modules, define the crystal and energy/forces calculator, run the sampler and finally plot the energy distribution. 

```python
#asap
from ase.build import bulk
import asap3
from hecss.core import HECSS, select_asap_model
from hecss.monitor import plot_stats
```

Then we define the crystal and interaction model used in the calculation. In this case we use 3x3x3 supercell of the SiC crystal in zincblende structure and describe the interaction using LAMMPS potential from the OpenKIM database and ASAP3 implementation of the calculator.

```python
#asap
# model = 'Tersoff_LAMMPS_ErhartAlbe_2005_SiC__MO_903987585848_003'
model = select_asap_model('SiC')
cryst = bulk('SiC', crystalstructure='zincblende', a=4.38120844, cubic=True).repeat((3,3,3))
cryst.set_calculator(asap3.OpenKIMcalculator(model))
```

Then we define the sampler parameters (N -- number of samples, T -- temperature) and run it.

```python
#asap
T = 300
N = 1_000
samples = HECSS(cryst, asap3.OpenKIMcalculator(model), T).generate(N)
```

And finally we plot the histogram of the resulting energy distribution which corresponds to the thermal equilibrium distribution.

```python
#asap
plot_stats(samples, T)
```


    
![png](docs/images/output_9_0.png)
    


## Install

The HECSS package is avaliable on pypi and conda-forge additionally the package is present also in my personal anaconda channel (jochym). Installation is simple, but requires a number of other packages to be installed as well. Package menagers handle these dependencies automatically. 

### Install with pip
It is advisable to install in a dedicated virtual environment e.g.:
```
python3 -m venv venv
. venv/bin/activate
```
then install with `pip`:
```
pip install hecss
```

### Install with conda
Also installation with conda should be performed for dedicated or some other non-base environment. To create dedicated environment you can invoke `conda create`:
```
conda create -n hecss -c conda-forge hecss
```
or you can install in some working environment `venv`:
```
conda install -n venv -c conda-forge hecss
```

### Example data archive

The example subdirectory from the source may be downloaded directly from the source repository: [hecss-examples.zip](https://gitlab.com/jochym/hecss/-/archive/master/hecss-master.zip?path=example) 

### The source code

The source is published at the [Gitlab hecss repository](https://gitlab.com/jochym/hecss). 
You can access it with git (recommended, particularly if you want to contribute to the development):
```bash
git clone https://gitlab.com/jochym/hecss.git
```
or you can download the whole distribution as a zip archive: [hecss.zip](https://gitlab.com/jochym/hecss/-/archive/master/hecss-master.zip)


%package help
Summary:	Development documents and examples for hecss
Provides:	python3-hecss-doc
%description help
# HECSS
> High Efficiency Configuration Space Sampler


[![PVersion Badge](https://img.shields.io/pypi/v/hecss.svg)](https://pypi.org/project/hecss/)
[![PDownloads Badge](https://img.shields.io/pypi/dm/hecss.svg)](https://pypi.org/project/hecss/)
[![CVersion Badge](https://anaconda.org/conda-forge/hecss/badges/version.svg)](https://anaconda.org/conda-forge/hecss)
[![Downloads Badge](https://anaconda.org/conda-forge/hecss/badges/downloads.svg)](https://anaconda.org/conda-forge/hecss)
[![License Badge](https://anaconda.org/jochym/hecss/badges/license.svg)](https://anaconda.org/jochym/hecss)

HECSS is a Markow chain Monte-Carlo, configuration space sampler using Metropolis-Hastings algorithm for probablity distribution sampling. It provides an alternative way to create representations of systems at thermal equilibrium without running a very expensive molecular dynamics simulation. The theoretical foundation of the code are presented in [SciPost Phys. 10, 129 (2021)](https://scipost.org/SciPostPhys.10.6.129) (short excerpt in [Background](https://jochym.gitlab.io/hecss/Background) in the [Documentation](https://jochym.gitlab.io/hecss/)). More detailed examples are included in the [LAMMPS](https://jochym.gitlab.io/hecss/LAMMPS_Tutorial) and [VASP](https://jochym.gitlab.io/hecss/VASP_Tutorial) tutorials.

If you use this software in published research please cite the above paper ([BibTeX](https://gitlab.com/jochym/hecss/-/raw/master/scipost.bib)) in your publication.

## A very short example

Minimal example using LAMMPS potential from the asap3 package and OpenKIM database. Here we will sample the thermodynamic distribution of 3C-SiC crystal at 300K. We start by importing required modules, define the crystal and energy/forces calculator, run the sampler and finally plot the energy distribution. 

```python
#asap
from ase.build import bulk
import asap3
from hecss.core import HECSS, select_asap_model
from hecss.monitor import plot_stats
```

Then we define the crystal and interaction model used in the calculation. In this case we use 3x3x3 supercell of the SiC crystal in zincblende structure and describe the interaction using LAMMPS potential from the OpenKIM database and ASAP3 implementation of the calculator.

```python
#asap
# model = 'Tersoff_LAMMPS_ErhartAlbe_2005_SiC__MO_903987585848_003'
model = select_asap_model('SiC')
cryst = bulk('SiC', crystalstructure='zincblende', a=4.38120844, cubic=True).repeat((3,3,3))
cryst.set_calculator(asap3.OpenKIMcalculator(model))
```

Then we define the sampler parameters (N -- number of samples, T -- temperature) and run it.

```python
#asap
T = 300
N = 1_000
samples = HECSS(cryst, asap3.OpenKIMcalculator(model), T).generate(N)
```

And finally we plot the histogram of the resulting energy distribution which corresponds to the thermal equilibrium distribution.

```python
#asap
plot_stats(samples, T)
```


    
![png](docs/images/output_9_0.png)
    


## Install

The HECSS package is avaliable on pypi and conda-forge additionally the package is present also in my personal anaconda channel (jochym). Installation is simple, but requires a number of other packages to be installed as well. Package menagers handle these dependencies automatically. 

### Install with pip
It is advisable to install in a dedicated virtual environment e.g.:
```
python3 -m venv venv
. venv/bin/activate
```
then install with `pip`:
```
pip install hecss
```

### Install with conda
Also installation with conda should be performed for dedicated or some other non-base environment. To create dedicated environment you can invoke `conda create`:
```
conda create -n hecss -c conda-forge hecss
```
or you can install in some working environment `venv`:
```
conda install -n venv -c conda-forge hecss
```

### Example data archive

The example subdirectory from the source may be downloaded directly from the source repository: [hecss-examples.zip](https://gitlab.com/jochym/hecss/-/archive/master/hecss-master.zip?path=example) 

### The source code

The source is published at the [Gitlab hecss repository](https://gitlab.com/jochym/hecss). 
You can access it with git (recommended, particularly if you want to contribute to the development):
```bash
git clone https://gitlab.com/jochym/hecss.git
```
or you can download the whole distribution as a zip archive: [hecss.zip](https://gitlab.com/jochym/hecss/-/archive/master/hecss-master.zip)


%prep
%autosetup -n hecss-0.5.0.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-hecss -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0.2-1
- Package Spec generated