1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
%global _empty_manifest_terminate_build 0
Name: python-hi-ml
Version: 0.3.1
Release: 1
Summary: Microsoft Health Futures package containing high level ML components
License: MIT License
URL: https://github.com/microsoft/hi-ml
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/05/e8/48f283a820dd621ac17cb095c75edce9d9bc99643ad3e614ec7c91ad6aa0/hi-ml-0.3.1.tar.gz
BuildArch: noarch
Requires: python3-dataclasses-json
Requires: python3-hi-ml-azure
Requires: python3-jinja2
Requires: python3-matplotlib
Requires: python3-opencv-python-headless
Requires: python3-pandas
Requires: python3-pillow
Requires: python3-protobuf
Requires: python3-pytorch-lightning
Requires: python3-rpdb
Requires: python3-torchvision
Requires: python3-torch
%description
# Microsoft Health Intelligence Machine Learning Toolbox
## Overview
This toolbox aims at providing low-level and high-level building blocks for Machine Learning / AI researchers and
practitioners. It helps to simplify and streamline work on deep learning models for healthcare and life sciences,
by providing tested components (data loaders, pre-processing), and deep learning models.
## Installation
You can install the latest version from `pypi` via
```console
pip install hi-ml
```
## Documentation
The detailed package documentation, with examples and API reference, is on
[readthedocs](https://hi-ml.readthedocs.io/en/latest/).
## Getting started
Examples that illustrate the use of the `hi-ml` toolbox can be found on
[readthedocs](https://hi-ml.readthedocs.io/en/latest/).
## Changelog
We are relying on Github's auto-generated changelog to describe what went into a release. Please check [each individual release](https://github.com/microsoft/hi-ml/releases) to see a full changelog.
## Links
* Github [https://github.com/microsoft/hi-ml](https://github.com/microsoft/hi-ml)
* Project InnerEye [http://aka.ms/InnerEye](http://aka.ms/InnerEye)
%package -n python3-hi-ml
Summary: Microsoft Health Futures package containing high level ML components
Provides: python-hi-ml
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-hi-ml
# Microsoft Health Intelligence Machine Learning Toolbox
## Overview
This toolbox aims at providing low-level and high-level building blocks for Machine Learning / AI researchers and
practitioners. It helps to simplify and streamline work on deep learning models for healthcare and life sciences,
by providing tested components (data loaders, pre-processing), and deep learning models.
## Installation
You can install the latest version from `pypi` via
```console
pip install hi-ml
```
## Documentation
The detailed package documentation, with examples and API reference, is on
[readthedocs](https://hi-ml.readthedocs.io/en/latest/).
## Getting started
Examples that illustrate the use of the `hi-ml` toolbox can be found on
[readthedocs](https://hi-ml.readthedocs.io/en/latest/).
## Changelog
We are relying on Github's auto-generated changelog to describe what went into a release. Please check [each individual release](https://github.com/microsoft/hi-ml/releases) to see a full changelog.
## Links
* Github [https://github.com/microsoft/hi-ml](https://github.com/microsoft/hi-ml)
* Project InnerEye [http://aka.ms/InnerEye](http://aka.ms/InnerEye)
%package help
Summary: Development documents and examples for hi-ml
Provides: python3-hi-ml-doc
%description help
# Microsoft Health Intelligence Machine Learning Toolbox
## Overview
This toolbox aims at providing low-level and high-level building blocks for Machine Learning / AI researchers and
practitioners. It helps to simplify and streamline work on deep learning models for healthcare and life sciences,
by providing tested components (data loaders, pre-processing), and deep learning models.
## Installation
You can install the latest version from `pypi` via
```console
pip install hi-ml
```
## Documentation
The detailed package documentation, with examples and API reference, is on
[readthedocs](https://hi-ml.readthedocs.io/en/latest/).
## Getting started
Examples that illustrate the use of the `hi-ml` toolbox can be found on
[readthedocs](https://hi-ml.readthedocs.io/en/latest/).
## Changelog
We are relying on Github's auto-generated changelog to describe what went into a release. Please check [each individual release](https://github.com/microsoft/hi-ml/releases) to see a full changelog.
## Links
* Github [https://github.com/microsoft/hi-ml](https://github.com/microsoft/hi-ml)
* Project InnerEye [http://aka.ms/InnerEye](http://aka.ms/InnerEye)
%prep
%autosetup -n hi-ml-0.3.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-hi-ml -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.3.1-1
- Package Spec generated
|