diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-29 10:59:17 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-29 10:59:17 +0000 |
commit | 2b79901cc94f8b776bfb5b0270cc6fb72d452387 (patch) | |
tree | 9e599ab04de0ac3f5ecde4dabefa5612304ac3ae | |
parent | aec93cd74fa766d947ad24973bbedc76f0c906ba (diff) |
automatic import of python-hideandseek
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-hideandseek.spec | 263 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 265 insertions, 0 deletions
@@ -0,0 +1 @@ +/hideandseek-0.1.5.tar.gz diff --git a/python-hideandseek.spec b/python-hideandseek.spec new file mode 100644 index 0000000..8621750 --- /dev/null +++ b/python-hideandseek.spec @@ -0,0 +1,263 @@ +%global _empty_manifest_terminate_build 0 +Name: python-hideandseek +Version: 0.1.5 +Release: 1 +Summary: library for deep learning and privacy preserving deep learning +License: MIT License +URL: https://github.com/jsyoo61/hideandseek +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/95/0a/554f1ae7e4f35482523a3494164c40048beb6476ec72fa7550a51df3f4a0/hideandseek-0.1.5.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-pandas +Requires: python3-matplotlib +Requires: python3-hydra-core +Requires: python3-tools-jsyoo61 + +%description +# hideandseek +Highly modularized deep learning training library. + +Why use `hideandseek`? + +- Easy training & saving deep learning models along with other modules (ex: preprocessing modules) required in inference +- Run multiple deep learning experiments in parallel on multiples GPUs (powered by [hydra](https://hydra.cc/docs/intro/), and python multiprocessing) +- Design and analyze experiments scientifically by modifying variables (powered by [hydra](https://hydra.cc/docs/intro/)) + +- Modularized machine learning pipeline allows using the same script for all types of experiments +- The same training code can be run in privacy preserving setting by minimal modifications + +Currently prettifying codes. (30.10.2022.) + + import torch + import torch.nn as nn + + # Generate data + x = torch.rand(200,1) + y = 5*x+2 + + model = nn.Linear(1,1) + dataset = torch.utils.data.TensorDataset(x, y) + criterion = nn.MSELoss() + cfg = { + 'lr': 1e-2, + 'batch_size': 32, + 'epoch': 10 # optional + } + + # Training configuration. All you need to train a neural network + kwargs = { + 'model':model, + 'dataset':dataset, + 'cfg_train':cfg, + 'criterion':criterion, + 'name': 'Test' # optional + } + trainer = hs.N.Node(**kwargs) + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + trainer.model.to(device) + + # Train for predefined number of epochs + trainer.train() # Train for predefined number of epochs + trainer.train(5) # Train for specified number of epochs + trainer.train(epoch=5) # Same thing with trainer.train(5) + trainer.train(step=500) # Train for specified number of updates + + node.model.cpu() + +and simply run multiple batch of experiments with a single line command such as: + + python train.py -m lr=1e-3,1e-2 batch_size=32,64 "random_seed=range(0,5)" \ + hydra/launcher=joblib hydra.launcher.n_jobs=8 + # Runs total of 2*2*5=40 batch of experiments, with 8 processes at a time. Experiment results are stored in hydra.sweep.dir which can be overridden. + +To do +- [ ] Draw figures to explain hideandseek +- [ ] GUI for generating experiment scripts when conducting variable sweeps + + + + +%package -n python3-hideandseek +Summary: library for deep learning and privacy preserving deep learning +Provides: python-hideandseek +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-hideandseek +# hideandseek +Highly modularized deep learning training library. + +Why use `hideandseek`? + +- Easy training & saving deep learning models along with other modules (ex: preprocessing modules) required in inference +- Run multiple deep learning experiments in parallel on multiples GPUs (powered by [hydra](https://hydra.cc/docs/intro/), and python multiprocessing) +- Design and analyze experiments scientifically by modifying variables (powered by [hydra](https://hydra.cc/docs/intro/)) + +- Modularized machine learning pipeline allows using the same script for all types of experiments +- The same training code can be run in privacy preserving setting by minimal modifications + +Currently prettifying codes. (30.10.2022.) + + import torch + import torch.nn as nn + + # Generate data + x = torch.rand(200,1) + y = 5*x+2 + + model = nn.Linear(1,1) + dataset = torch.utils.data.TensorDataset(x, y) + criterion = nn.MSELoss() + cfg = { + 'lr': 1e-2, + 'batch_size': 32, + 'epoch': 10 # optional + } + + # Training configuration. All you need to train a neural network + kwargs = { + 'model':model, + 'dataset':dataset, + 'cfg_train':cfg, + 'criterion':criterion, + 'name': 'Test' # optional + } + trainer = hs.N.Node(**kwargs) + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + trainer.model.to(device) + + # Train for predefined number of epochs + trainer.train() # Train for predefined number of epochs + trainer.train(5) # Train for specified number of epochs + trainer.train(epoch=5) # Same thing with trainer.train(5) + trainer.train(step=500) # Train for specified number of updates + + node.model.cpu() + +and simply run multiple batch of experiments with a single line command such as: + + python train.py -m lr=1e-3,1e-2 batch_size=32,64 "random_seed=range(0,5)" \ + hydra/launcher=joblib hydra.launcher.n_jobs=8 + # Runs total of 2*2*5=40 batch of experiments, with 8 processes at a time. Experiment results are stored in hydra.sweep.dir which can be overridden. + +To do +- [ ] Draw figures to explain hideandseek +- [ ] GUI for generating experiment scripts when conducting variable sweeps + + + + +%package help +Summary: Development documents and examples for hideandseek +Provides: python3-hideandseek-doc +%description help +# hideandseek +Highly modularized deep learning training library. + +Why use `hideandseek`? + +- Easy training & saving deep learning models along with other modules (ex: preprocessing modules) required in inference +- Run multiple deep learning experiments in parallel on multiples GPUs (powered by [hydra](https://hydra.cc/docs/intro/), and python multiprocessing) +- Design and analyze experiments scientifically by modifying variables (powered by [hydra](https://hydra.cc/docs/intro/)) + +- Modularized machine learning pipeline allows using the same script for all types of experiments +- The same training code can be run in privacy preserving setting by minimal modifications + +Currently prettifying codes. (30.10.2022.) + + import torch + import torch.nn as nn + + # Generate data + x = torch.rand(200,1) + y = 5*x+2 + + model = nn.Linear(1,1) + dataset = torch.utils.data.TensorDataset(x, y) + criterion = nn.MSELoss() + cfg = { + 'lr': 1e-2, + 'batch_size': 32, + 'epoch': 10 # optional + } + + # Training configuration. All you need to train a neural network + kwargs = { + 'model':model, + 'dataset':dataset, + 'cfg_train':cfg, + 'criterion':criterion, + 'name': 'Test' # optional + } + trainer = hs.N.Node(**kwargs) + + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") + trainer.model.to(device) + + # Train for predefined number of epochs + trainer.train() # Train for predefined number of epochs + trainer.train(5) # Train for specified number of epochs + trainer.train(epoch=5) # Same thing with trainer.train(5) + trainer.train(step=500) # Train for specified number of updates + + node.model.cpu() + +and simply run multiple batch of experiments with a single line command such as: + + python train.py -m lr=1e-3,1e-2 batch_size=32,64 "random_seed=range(0,5)" \ + hydra/launcher=joblib hydra.launcher.n_jobs=8 + # Runs total of 2*2*5=40 batch of experiments, with 8 processes at a time. Experiment results are stored in hydra.sweep.dir which can be overridden. + +To do +- [ ] Draw figures to explain hideandseek +- [ ] GUI for generating experiment scripts when conducting variable sweeps + + + + +%prep +%autosetup -n hideandseek-0.1.5 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-hideandseek -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.5-1 +- Package Spec generated @@ -0,0 +1 @@ +c13d19b452f8dcf79d4bdcb8e8904025 hideandseek-0.1.5.tar.gz |