summaryrefslogtreecommitdiff
path: root/python-highdicom.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-highdicom.spec')
-rw-r--r--python-highdicom.spec196
1 files changed, 196 insertions, 0 deletions
diff --git a/python-highdicom.spec b/python-highdicom.spec
new file mode 100644
index 0000000..368cce3
--- /dev/null
+++ b/python-highdicom.spec
@@ -0,0 +1,196 @@
+%global _empty_manifest_terminate_build 0
+Name: python-highdicom
+Version: 0.21.1
+Release: 1
+Summary: High-level DICOM abstractions.
+License: MIT
+URL: https://github.com/imagingdatacommons/highdicom
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/5f/fa/8de65491f282678c588a3059e3631c290fc53f55ff4ea2be5c0075392b57/highdicom-0.21.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-pydicom
+Requires: python3-numpy
+Requires: python3-pillow
+Requires: python3-pillow-jpls
+Requires: python3-pylibjpeg
+Requires: python3-pylibjpeg-libjpeg
+Requires: python3-pylibjpeg-openjpeg
+
+%description
+[![Build Status](https://github.com/imagingdatacommons/highdicom/actions/workflows/run_unit_tests.yml/badge.svg)](https://github.com/imagingdatacommons/highdicom/actions)
+[![PyPi Distribution](https://img.shields.io/pypi/v/highdicom.svg)](https://pypi.python.org/pypi/highdicom/)
+[![Python Versions](https://img.shields.io/pypi/pyversions/highdicom.svg)](https://pypi.org/project/highdicom/)
+[![Downloads](https://pepy.tech/badge/highdicom)](https://pepy.tech/project/highdicom)
+
+# High DICOM
+
+A library that provides high-level DICOM abstractions for the Python programming language to facilitate the creation and handling of DICOM objects for image-derived information, including image annotations, and image analysis results.
+It currently provides tools for creating and decoding the following DICOM information object definitions (IODs):
+* Annotations
+* Parametric Map images
+* Segmentation images
+* Structured Report documents
+* Secondary Capture images
+* Key Object Selection documents
+* Legacy Converted Enhanced CT/PET/MR images (e.g., for single frame to multi-frame conversion)
+* Softcopy Presentation State instances (including Grayscale, Color, and Pseudo-Color)
+
+## Documentation
+
+Please refer to the online documentation at [highdicom.readthedocs.io](https://highdicom.readthedocs.io), which includes installation instructions, a user guide with examples, a developer guide, and complete documentation of the application programming interface of the `highdicom` package.
+
+## Citation
+
+For more information about the motivation of the library and the design of highdicom's API, please see the following article:
+
+> [Highdicom: A Python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology](https://arxiv.org/abs/2106.07806)
+> C.P. Bridge, C. Gorman, S. Pieper, S.W. Doyle, J.K. Lennerz, J. Kalpathy-Cramer, D.A. Clunie, A.Y. Fedorov, and M.D. Herrmann
+
+If you use highdicom in your research, please cite the above article.
+
+## Support
+
+The developers gratefully acknowledge their support:
+* The [Alliance for Digital Pathology](https://digitalpathologyalliance.org/)
+* The [MGH & BWH Center for Clinical Data Science](https://www.ccds.io/)
+* [Quantitative Image Informatics for Cancer Research (QIICR)](http://qiicr.org)
+* [Radiomics](http://radiomics.io)
+* The [NCI Imaging Data Commons](https://imaging.datacommons.cancer.gov/)
+
+
+%package -n python3-highdicom
+Summary: High-level DICOM abstractions.
+Provides: python-highdicom
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-highdicom
+[![Build Status](https://github.com/imagingdatacommons/highdicom/actions/workflows/run_unit_tests.yml/badge.svg)](https://github.com/imagingdatacommons/highdicom/actions)
+[![PyPi Distribution](https://img.shields.io/pypi/v/highdicom.svg)](https://pypi.python.org/pypi/highdicom/)
+[![Python Versions](https://img.shields.io/pypi/pyversions/highdicom.svg)](https://pypi.org/project/highdicom/)
+[![Downloads](https://pepy.tech/badge/highdicom)](https://pepy.tech/project/highdicom)
+
+# High DICOM
+
+A library that provides high-level DICOM abstractions for the Python programming language to facilitate the creation and handling of DICOM objects for image-derived information, including image annotations, and image analysis results.
+It currently provides tools for creating and decoding the following DICOM information object definitions (IODs):
+* Annotations
+* Parametric Map images
+* Segmentation images
+* Structured Report documents
+* Secondary Capture images
+* Key Object Selection documents
+* Legacy Converted Enhanced CT/PET/MR images (e.g., for single frame to multi-frame conversion)
+* Softcopy Presentation State instances (including Grayscale, Color, and Pseudo-Color)
+
+## Documentation
+
+Please refer to the online documentation at [highdicom.readthedocs.io](https://highdicom.readthedocs.io), which includes installation instructions, a user guide with examples, a developer guide, and complete documentation of the application programming interface of the `highdicom` package.
+
+## Citation
+
+For more information about the motivation of the library and the design of highdicom's API, please see the following article:
+
+> [Highdicom: A Python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology](https://arxiv.org/abs/2106.07806)
+> C.P. Bridge, C. Gorman, S. Pieper, S.W. Doyle, J.K. Lennerz, J. Kalpathy-Cramer, D.A. Clunie, A.Y. Fedorov, and M.D. Herrmann
+
+If you use highdicom in your research, please cite the above article.
+
+## Support
+
+The developers gratefully acknowledge their support:
+* The [Alliance for Digital Pathology](https://digitalpathologyalliance.org/)
+* The [MGH & BWH Center for Clinical Data Science](https://www.ccds.io/)
+* [Quantitative Image Informatics for Cancer Research (QIICR)](http://qiicr.org)
+* [Radiomics](http://radiomics.io)
+* The [NCI Imaging Data Commons](https://imaging.datacommons.cancer.gov/)
+
+
+%package help
+Summary: Development documents and examples for highdicom
+Provides: python3-highdicom-doc
+%description help
+[![Build Status](https://github.com/imagingdatacommons/highdicom/actions/workflows/run_unit_tests.yml/badge.svg)](https://github.com/imagingdatacommons/highdicom/actions)
+[![PyPi Distribution](https://img.shields.io/pypi/v/highdicom.svg)](https://pypi.python.org/pypi/highdicom/)
+[![Python Versions](https://img.shields.io/pypi/pyversions/highdicom.svg)](https://pypi.org/project/highdicom/)
+[![Downloads](https://pepy.tech/badge/highdicom)](https://pepy.tech/project/highdicom)
+
+# High DICOM
+
+A library that provides high-level DICOM abstractions for the Python programming language to facilitate the creation and handling of DICOM objects for image-derived information, including image annotations, and image analysis results.
+It currently provides tools for creating and decoding the following DICOM information object definitions (IODs):
+* Annotations
+* Parametric Map images
+* Segmentation images
+* Structured Report documents
+* Secondary Capture images
+* Key Object Selection documents
+* Legacy Converted Enhanced CT/PET/MR images (e.g., for single frame to multi-frame conversion)
+* Softcopy Presentation State instances (including Grayscale, Color, and Pseudo-Color)
+
+## Documentation
+
+Please refer to the online documentation at [highdicom.readthedocs.io](https://highdicom.readthedocs.io), which includes installation instructions, a user guide with examples, a developer guide, and complete documentation of the application programming interface of the `highdicom` package.
+
+## Citation
+
+For more information about the motivation of the library and the design of highdicom's API, please see the following article:
+
+> [Highdicom: A Python library for standardized encoding of image annotations and machine learning model outputs in pathology and radiology](https://arxiv.org/abs/2106.07806)
+> C.P. Bridge, C. Gorman, S. Pieper, S.W. Doyle, J.K. Lennerz, J. Kalpathy-Cramer, D.A. Clunie, A.Y. Fedorov, and M.D. Herrmann
+
+If you use highdicom in your research, please cite the above article.
+
+## Support
+
+The developers gratefully acknowledge their support:
+* The [Alliance for Digital Pathology](https://digitalpathologyalliance.org/)
+* The [MGH & BWH Center for Clinical Data Science](https://www.ccds.io/)
+* [Quantitative Image Informatics for Cancer Research (QIICR)](http://qiicr.org)
+* [Radiomics](http://radiomics.io)
+* The [NCI Imaging Data Commons](https://imaging.datacommons.cancer.gov/)
+
+
+%prep
+%autosetup -n highdicom-0.21.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-highdicom -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Wed May 17 2023 Python_Bot <Python_Bot@openeuler.org> - 0.21.1-1
+- Package Spec generated