1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
|
%global _empty_manifest_terminate_build 0
Name: python-huey
Version: 2.4.5
Release: 1
Summary: huey, a little task queue
License: None
URL: http://github.com/coleifer/huey/
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a7/2e/a1afc46dd8fadf43eaa7ca7232d1c766d444d636e840278bd1b6c2b6d873/huey-2.4.5.tar.gz
BuildArch: noarch
%description
from huey import RedisHuey, crontab
huey = RedisHuey('my-app', host='redis.myapp.com')
@huey.task()
def add_numbers(a, b):
return a + b
@huey.task(retries=2, retry_delay=60)
def flaky_task(url):
# This task might fail, in which case it will be retried up to 2 times
# with a delay of 60s between retries.
return this_might_fail(url)
@huey.periodic_task(crontab(minute='0', hour='3'))
def nightly_backup():
sync_all_data()
Calling a ``task``-decorated function will enqueue the function call for
execution by the consumer. A special result handle is returned immediately,
which can be used to fetch the result once the task is finished:
>>> from demo import add_numbers
>>> res = add_numbers(1, 2)
>>> res
<Result: task 6b6f36fc-da0d-4069-b46c-c0d4ccff1df6>
>>> res()
3
Tasks can be scheduled to run in the future:
>>> res = add_numbers.schedule((2, 3), delay=10) # Will be run in ~10s.
>>> res(blocking=True) # Will block until task finishes, in ~10s.
5
For much more, check out the `guide <https://huey.readthedocs.io/en/latest/guide.html>`_
or take a look at the `example code <https://github.com/coleifer/huey/tree/master/examples/>`_.
Running the consumer
^^^^^^^^^^^^^^^^^^^^
Run the consumer with four worker processes:
$ huey_consumer.py my_app.huey -k process -w 4
To run the consumer with a single worker thread (default):
$ huey_consumer.py my_app.huey
If your work-loads are mostly IO-bound, you can run the consumer with threads
or greenlets instead. Because greenlets are so lightweight, you can run quite a
few of them efficiently:
$ huey_consumer.py my_app.huey -k greenlet -w 32
%package -n python3-huey
Summary: huey, a little task queue
Provides: python-huey
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-huey
from huey import RedisHuey, crontab
huey = RedisHuey('my-app', host='redis.myapp.com')
@huey.task()
def add_numbers(a, b):
return a + b
@huey.task(retries=2, retry_delay=60)
def flaky_task(url):
# This task might fail, in which case it will be retried up to 2 times
# with a delay of 60s between retries.
return this_might_fail(url)
@huey.periodic_task(crontab(minute='0', hour='3'))
def nightly_backup():
sync_all_data()
Calling a ``task``-decorated function will enqueue the function call for
execution by the consumer. A special result handle is returned immediately,
which can be used to fetch the result once the task is finished:
>>> from demo import add_numbers
>>> res = add_numbers(1, 2)
>>> res
<Result: task 6b6f36fc-da0d-4069-b46c-c0d4ccff1df6>
>>> res()
3
Tasks can be scheduled to run in the future:
>>> res = add_numbers.schedule((2, 3), delay=10) # Will be run in ~10s.
>>> res(blocking=True) # Will block until task finishes, in ~10s.
5
For much more, check out the `guide <https://huey.readthedocs.io/en/latest/guide.html>`_
or take a look at the `example code <https://github.com/coleifer/huey/tree/master/examples/>`_.
Running the consumer
^^^^^^^^^^^^^^^^^^^^
Run the consumer with four worker processes:
$ huey_consumer.py my_app.huey -k process -w 4
To run the consumer with a single worker thread (default):
$ huey_consumer.py my_app.huey
If your work-loads are mostly IO-bound, you can run the consumer with threads
or greenlets instead. Because greenlets are so lightweight, you can run quite a
few of them efficiently:
$ huey_consumer.py my_app.huey -k greenlet -w 32
%package help
Summary: Development documents and examples for huey
Provides: python3-huey-doc
%description help
from huey import RedisHuey, crontab
huey = RedisHuey('my-app', host='redis.myapp.com')
@huey.task()
def add_numbers(a, b):
return a + b
@huey.task(retries=2, retry_delay=60)
def flaky_task(url):
# This task might fail, in which case it will be retried up to 2 times
# with a delay of 60s between retries.
return this_might_fail(url)
@huey.periodic_task(crontab(minute='0', hour='3'))
def nightly_backup():
sync_all_data()
Calling a ``task``-decorated function will enqueue the function call for
execution by the consumer. A special result handle is returned immediately,
which can be used to fetch the result once the task is finished:
>>> from demo import add_numbers
>>> res = add_numbers(1, 2)
>>> res
<Result: task 6b6f36fc-da0d-4069-b46c-c0d4ccff1df6>
>>> res()
3
Tasks can be scheduled to run in the future:
>>> res = add_numbers.schedule((2, 3), delay=10) # Will be run in ~10s.
>>> res(blocking=True) # Will block until task finishes, in ~10s.
5
For much more, check out the `guide <https://huey.readthedocs.io/en/latest/guide.html>`_
or take a look at the `example code <https://github.com/coleifer/huey/tree/master/examples/>`_.
Running the consumer
^^^^^^^^^^^^^^^^^^^^
Run the consumer with four worker processes:
$ huey_consumer.py my_app.huey -k process -w 4
To run the consumer with a single worker thread (default):
$ huey_consumer.py my_app.huey
If your work-loads are mostly IO-bound, you can run the consumer with threads
or greenlets instead. Because greenlets are so lightweight, you can run quite a
few of them efficiently:
$ huey_consumer.py my_app.huey -k greenlet -w 32
%prep
%autosetup -n huey-2.4.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-huey -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 2.4.5-1
- Package Spec generated
|