diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-11 06:39:36 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-11 06:39:36 +0000 |
commit | 7ad17e0a235812ebb9d4b129372d733b4a265b4a (patch) | |
tree | 1b51a89216bd24d22f753b59f3701c390beb7b80 | |
parent | 0cb4d4817a423399f523ca877f971270cc257b1d (diff) |
automatic import of python-iminuit
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-iminuit.spec | 136 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 138 insertions, 0 deletions
@@ -0,0 +1 @@ +/iminuit-2.21.3.tar.gz diff --git a/python-iminuit.spec b/python-iminuit.spec new file mode 100644 index 0000000..135aa08 --- /dev/null +++ b/python-iminuit.spec @@ -0,0 +1,136 @@ +%global _empty_manifest_terminate_build 0 +Name: python-iminuit +Version: 2.21.3 +Release: 1 +Summary: Jupyter-friendly Python frontend for MINUIT2 in C++ +License: Minuit is from SEAL Minuit It's LGPL v2 http://seal.web.cern.ch/seal/main/license.html. For iminuit, I'm releasing it as MIT license: Copyright (c) 2012 Piti Ongmongkolkul Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. Note: MIT license is GPL compatible, so it is an acceptable license for a wrapper, as can be seen here: http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#GPLWrapper http://www.gnu.org/licenses/old-licenses/gpl-2.0-faq.html#OrigBSD (L)GPL can be combined or included in code that does not impose more restrictive conditions. +URL: https://pypi.org/project/iminuit/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/be/95/a2888ba5fdcea6736370ad2aa988d3c471daf6287bca534897c5c72351d3/iminuit-2.21.3.tar.gz + +Requires: python3-numpy +Requires: python3-typing-extensions +Requires: python3-sphinx +Requires: python3-sphinx-rtd-theme +Requires: python3-nbsphinx +Requires: python3-nbconvert +Requires: python3-nbformat +Requires: python3-jupyter-client +Requires: python3-ipykernel +Requires: python3-jax +Requires: python3-jaxlib +Requires: python3-coverage +Requires: python3-cython +Requires: python3-ipywidgets +Requires: python3-ipykernel +Requires: python3-joblib +Requires: python3-jacobi +Requires: python3-matplotlib +Requires: python3-numpy +Requires: python3-numba +Requires: python3-numba-stats +Requires: python3-pytest +Requires: python3-scipy +Requires: python3-tabulate +Requires: python3-boost-histogram +Requires: python3-resample + +%description +*iminuit* is a Jupyter-friendly Python interface for the *Minuit2* C++ library maintained by CERN's ROOT team. +Minuit was designed to minimise statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis. +- Supported CPython versions: 3.6+ +- Supported PyPy versions: 3.6+ +- Supported platforms: Linux, OSX and Windows. +The iminuit package comes with additional features: +- Builtin cost functions for statistical fits + - Binned and unbinned maximum-likelihood + - Non-linear regression with (optionally robust) weighted least-squares + - Gaussian penalty terms + - Cost functions can be combined by adding them: ``total_cost = cost_1 + cost_2`` +- Support for SciPy minimisers as alternatives to Minuit's Migrad algorithm (optional) +- Support for Numba accelerated functions (optional) + +%package -n python3-iminuit +Summary: Jupyter-friendly Python frontend for MINUIT2 in C++ +Provides: python-iminuit +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +BuildRequires: python3-cffi +BuildRequires: gcc +BuildRequires: gdb +%description -n python3-iminuit +*iminuit* is a Jupyter-friendly Python interface for the *Minuit2* C++ library maintained by CERN's ROOT team. +Minuit was designed to minimise statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis. +- Supported CPython versions: 3.6+ +- Supported PyPy versions: 3.6+ +- Supported platforms: Linux, OSX and Windows. +The iminuit package comes with additional features: +- Builtin cost functions for statistical fits + - Binned and unbinned maximum-likelihood + - Non-linear regression with (optionally robust) weighted least-squares + - Gaussian penalty terms + - Cost functions can be combined by adding them: ``total_cost = cost_1 + cost_2`` +- Support for SciPy minimisers as alternatives to Minuit's Migrad algorithm (optional) +- Support for Numba accelerated functions (optional) + +%package help +Summary: Development documents and examples for iminuit +Provides: python3-iminuit-doc +%description help +*iminuit* is a Jupyter-friendly Python interface for the *Minuit2* C++ library maintained by CERN's ROOT team. +Minuit was designed to minimise statistical cost functions, for likelihood and least-squares fits of parametric models to data. It provides the best-fit parameters and error estimates from likelihood profile analysis. +- Supported CPython versions: 3.6+ +- Supported PyPy versions: 3.6+ +- Supported platforms: Linux, OSX and Windows. +The iminuit package comes with additional features: +- Builtin cost functions for statistical fits + - Binned and unbinned maximum-likelihood + - Non-linear regression with (optionally robust) weighted least-squares + - Gaussian penalty terms + - Cost functions can be combined by adding them: ``total_cost = cost_1 + cost_2`` +- Support for SciPy minimisers as alternatives to Minuit's Migrad algorithm (optional) +- Support for Numba accelerated functions (optional) + +%prep +%autosetup -n iminuit-2.21.3 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-iminuit -f filelist.lst +%dir %{python3_sitearch}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 2.21.3-1 +- Package Spec generated @@ -0,0 +1 @@ +3b9bdd51d530ba63b5067f94107061af iminuit-2.21.3.tar.gz |