1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
|
%global _empty_manifest_terminate_build 0
Name: python-InSilicoSeq
Version: 1.5.4
Release: 1
Summary: a sequencing simulator
License: MIT
URL: https://github.com/HadrienG/InSilicoSeq
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/cf/35/9af5b2e15e00a76bf1f24a55474665d323ffe7182ccf568eeae6b4ee496d/InSilicoSeq-1.5.4.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-biopython
Requires: python3-pysam
Requires: python3-future
Requires: python3-joblib
Requires: python3-requests
%description
# InSilicoSeq
## A sequencing simulator
[](https://github.com/HadrienG/InSilicoSeq/actions)
[](http://insilicoseq.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/InSilicoSeq)
[](https://codecov.io/gh/HadrienG/InSilicoSeq)
[](https://doi.org/10.1093/bioinformatics/bty630)
[](LICENSE)
InSilicoSeq is a sequencing simulator producing realistic Illumina reads.
Primarily intended for simulating metagenomic samples, it can also be used to produce sequencing data from a single genome.
InSilicoSeq is written in python, and use kernel density estimators to model the read quality of real sequencing data.
InSilicoSeq support substitution, insertion and deletion errors. If you don't have the use for insertion and deletion error a basic error model is provided.
## Installation
Insilicoseq is Available in [bioconda](https://bioconda.github.io/).
To install with conda:
```shell
conda install -c bioconda insilicoseq
```
Or with pip:
```shell
pip install InSilicoSeq
```
_Note:_ Insilicoseq requires python >= 3.5
Alternatively, with docker:
```shell
docker pull hadrieng/insilicoseq:latest
```
For more installation options, please refer to the full [documentation](http://insilicoseq.readthedocs.io)
## Usage
InSilicoSeq has two subcommands: `iss generate` to generate Illumina reads and `iss model` to create an error model from which the reads will take their characteristics.
InSilicoSeq comes with pre-computed error models that should be sufficient for most use cases.
### Generate reads with a pre-computed error model
for generating 1 million reads modelling a MiSeq instrument:
```shell
curl -O -J -L https://osf.io/thser/download # download the example data
iss generate --genomes SRS121011.fasta --model miseq --output miseq_reads
```
where `genomes.fasta` should be replaced by a (multi-)fasta file containing the reference genome(s) from which the simulated reads will be generated.
InSilicoSeq comes with 3 error models: `MiSeq`, `HiSeq` and `NovaSeq`.
If you have built your own model, pass the `.npz` file to the `--model` argument to simulate reads from your own error model.
For 10 million reads and a custom error model:
```shell
curl -O -J -L https://osf.io/thser/download # download the example data
iss generate -g SRS121011.fasta -n 10m --model my_model.npz --output /path/to/my_reads
```
granted you have built `my_model.npz` with `iss model` (see [below](#create-your-own-error-model))
For more examples and a full list of options, please refer to the full
[documentation](http://insilicoseq.readthedocs.io)
### Generate reads without input genomes
We can download some for you! InSilicoSeq can download random genomes from the ncbi using the infamous [eutils](https://www.ncbi.nlm.nih.gov/books/NBK25501/)
The command
```shell
iss generate --ncbi bacteria -u 10 --model MiSeq --output ncbi_reads
```
will generate 1 million reads from 10 random bacterial genomes.
For more examples and a full list of options, please refer to the full [documentation](http://insilicoseq.readthedocs.io)
### Create your own error model
If you do not wish to use the pre-computed error models provided with InSilicoSeq, it is possible to create your own.
Say you have a reference metagenome called `genomes.fasta`, and read pairs `reads_R1.fastq.gz` and `reads_R2.fastq.gz`
Align you reads against the reference:
```shell
bowtie2-build genomes.fasta genomes
bowtie2 -x genomes -1 reads_R1.fastq.gz -2 reads_R2.fastq.gz | \
samtools view -bS | samtools sort -o genomes.bam
samtools index genomes.bam
```
then build the model:
```shell
iss model -b genomes.bam -o genomes
```
which will create a `genome.npz` file containing your newly built model
## License
Code is under the [MIT](LICENSE) license.
## Issues
Found a bug or have a question? Please open an [issue](https://github.com/HadrienG/InSilicoSeq/issues)
## Contributing
We welcome contributions from the community! See our [Contributing](CONTRIBUTING.md) guidelines
## Citation
If you use our software, please cite us!
> Gourlé H, Karlsson-Lindsjö O, Hayer J and Bongcam+Rudloff E, Simulating Illumina data with InSilicoSeq. _Bioinformatics_ (2018) doi:10.1093/bioinformatics/bty630
%package -n python3-InSilicoSeq
Summary: a sequencing simulator
Provides: python-InSilicoSeq
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-InSilicoSeq
# InSilicoSeq
## A sequencing simulator
[](https://github.com/HadrienG/InSilicoSeq/actions)
[](http://insilicoseq.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/InSilicoSeq)
[](https://codecov.io/gh/HadrienG/InSilicoSeq)
[](https://doi.org/10.1093/bioinformatics/bty630)
[](LICENSE)
InSilicoSeq is a sequencing simulator producing realistic Illumina reads.
Primarily intended for simulating metagenomic samples, it can also be used to produce sequencing data from a single genome.
InSilicoSeq is written in python, and use kernel density estimators to model the read quality of real sequencing data.
InSilicoSeq support substitution, insertion and deletion errors. If you don't have the use for insertion and deletion error a basic error model is provided.
## Installation
Insilicoseq is Available in [bioconda](https://bioconda.github.io/).
To install with conda:
```shell
conda install -c bioconda insilicoseq
```
Or with pip:
```shell
pip install InSilicoSeq
```
_Note:_ Insilicoseq requires python >= 3.5
Alternatively, with docker:
```shell
docker pull hadrieng/insilicoseq:latest
```
For more installation options, please refer to the full [documentation](http://insilicoseq.readthedocs.io)
## Usage
InSilicoSeq has two subcommands: `iss generate` to generate Illumina reads and `iss model` to create an error model from which the reads will take their characteristics.
InSilicoSeq comes with pre-computed error models that should be sufficient for most use cases.
### Generate reads with a pre-computed error model
for generating 1 million reads modelling a MiSeq instrument:
```shell
curl -O -J -L https://osf.io/thser/download # download the example data
iss generate --genomes SRS121011.fasta --model miseq --output miseq_reads
```
where `genomes.fasta` should be replaced by a (multi-)fasta file containing the reference genome(s) from which the simulated reads will be generated.
InSilicoSeq comes with 3 error models: `MiSeq`, `HiSeq` and `NovaSeq`.
If you have built your own model, pass the `.npz` file to the `--model` argument to simulate reads from your own error model.
For 10 million reads and a custom error model:
```shell
curl -O -J -L https://osf.io/thser/download # download the example data
iss generate -g SRS121011.fasta -n 10m --model my_model.npz --output /path/to/my_reads
```
granted you have built `my_model.npz` with `iss model` (see [below](#create-your-own-error-model))
For more examples and a full list of options, please refer to the full
[documentation](http://insilicoseq.readthedocs.io)
### Generate reads without input genomes
We can download some for you! InSilicoSeq can download random genomes from the ncbi using the infamous [eutils](https://www.ncbi.nlm.nih.gov/books/NBK25501/)
The command
```shell
iss generate --ncbi bacteria -u 10 --model MiSeq --output ncbi_reads
```
will generate 1 million reads from 10 random bacterial genomes.
For more examples and a full list of options, please refer to the full [documentation](http://insilicoseq.readthedocs.io)
### Create your own error model
If you do not wish to use the pre-computed error models provided with InSilicoSeq, it is possible to create your own.
Say you have a reference metagenome called `genomes.fasta`, and read pairs `reads_R1.fastq.gz` and `reads_R2.fastq.gz`
Align you reads against the reference:
```shell
bowtie2-build genomes.fasta genomes
bowtie2 -x genomes -1 reads_R1.fastq.gz -2 reads_R2.fastq.gz | \
samtools view -bS | samtools sort -o genomes.bam
samtools index genomes.bam
```
then build the model:
```shell
iss model -b genomes.bam -o genomes
```
which will create a `genome.npz` file containing your newly built model
## License
Code is under the [MIT](LICENSE) license.
## Issues
Found a bug or have a question? Please open an [issue](https://github.com/HadrienG/InSilicoSeq/issues)
## Contributing
We welcome contributions from the community! See our [Contributing](CONTRIBUTING.md) guidelines
## Citation
If you use our software, please cite us!
> Gourlé H, Karlsson-Lindsjö O, Hayer J and Bongcam+Rudloff E, Simulating Illumina data with InSilicoSeq. _Bioinformatics_ (2018) doi:10.1093/bioinformatics/bty630
%package help
Summary: Development documents and examples for InSilicoSeq
Provides: python3-InSilicoSeq-doc
%description help
# InSilicoSeq
## A sequencing simulator
[](https://github.com/HadrienG/InSilicoSeq/actions)
[](http://insilicoseq.readthedocs.io/en/latest/?badge=latest)
[](https://badge.fury.io/py/InSilicoSeq)
[](https://codecov.io/gh/HadrienG/InSilicoSeq)
[](https://doi.org/10.1093/bioinformatics/bty630)
[](LICENSE)
InSilicoSeq is a sequencing simulator producing realistic Illumina reads.
Primarily intended for simulating metagenomic samples, it can also be used to produce sequencing data from a single genome.
InSilicoSeq is written in python, and use kernel density estimators to model the read quality of real sequencing data.
InSilicoSeq support substitution, insertion and deletion errors. If you don't have the use for insertion and deletion error a basic error model is provided.
## Installation
Insilicoseq is Available in [bioconda](https://bioconda.github.io/).
To install with conda:
```shell
conda install -c bioconda insilicoseq
```
Or with pip:
```shell
pip install InSilicoSeq
```
_Note:_ Insilicoseq requires python >= 3.5
Alternatively, with docker:
```shell
docker pull hadrieng/insilicoseq:latest
```
For more installation options, please refer to the full [documentation](http://insilicoseq.readthedocs.io)
## Usage
InSilicoSeq has two subcommands: `iss generate` to generate Illumina reads and `iss model` to create an error model from which the reads will take their characteristics.
InSilicoSeq comes with pre-computed error models that should be sufficient for most use cases.
### Generate reads with a pre-computed error model
for generating 1 million reads modelling a MiSeq instrument:
```shell
curl -O -J -L https://osf.io/thser/download # download the example data
iss generate --genomes SRS121011.fasta --model miseq --output miseq_reads
```
where `genomes.fasta` should be replaced by a (multi-)fasta file containing the reference genome(s) from which the simulated reads will be generated.
InSilicoSeq comes with 3 error models: `MiSeq`, `HiSeq` and `NovaSeq`.
If you have built your own model, pass the `.npz` file to the `--model` argument to simulate reads from your own error model.
For 10 million reads and a custom error model:
```shell
curl -O -J -L https://osf.io/thser/download # download the example data
iss generate -g SRS121011.fasta -n 10m --model my_model.npz --output /path/to/my_reads
```
granted you have built `my_model.npz` with `iss model` (see [below](#create-your-own-error-model))
For more examples and a full list of options, please refer to the full
[documentation](http://insilicoseq.readthedocs.io)
### Generate reads without input genomes
We can download some for you! InSilicoSeq can download random genomes from the ncbi using the infamous [eutils](https://www.ncbi.nlm.nih.gov/books/NBK25501/)
The command
```shell
iss generate --ncbi bacteria -u 10 --model MiSeq --output ncbi_reads
```
will generate 1 million reads from 10 random bacterial genomes.
For more examples and a full list of options, please refer to the full [documentation](http://insilicoseq.readthedocs.io)
### Create your own error model
If you do not wish to use the pre-computed error models provided with InSilicoSeq, it is possible to create your own.
Say you have a reference metagenome called `genomes.fasta`, and read pairs `reads_R1.fastq.gz` and `reads_R2.fastq.gz`
Align you reads against the reference:
```shell
bowtie2-build genomes.fasta genomes
bowtie2 -x genomes -1 reads_R1.fastq.gz -2 reads_R2.fastq.gz | \
samtools view -bS | samtools sort -o genomes.bam
samtools index genomes.bam
```
then build the model:
```shell
iss model -b genomes.bam -o genomes
```
which will create a `genome.npz` file containing your newly built model
## License
Code is under the [MIT](LICENSE) license.
## Issues
Found a bug or have a question? Please open an [issue](https://github.com/HadrienG/InSilicoSeq/issues)
## Contributing
We welcome contributions from the community! See our [Contributing](CONTRIBUTING.md) guidelines
## Citation
If you use our software, please cite us!
> Gourlé H, Karlsson-Lindsjö O, Hayer J and Bongcam+Rudloff E, Simulating Illumina data with InSilicoSeq. _Bioinformatics_ (2018) doi:10.1093/bioinformatics/bty630
%prep
%autosetup -n InSilicoSeq-1.5.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-InSilicoSeq -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.5.4-1
- Package Spec generated
|