1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
%global _empty_manifest_terminate_build 0
Name: python-iops
Version: 0.5.1
Release: 1
Summary: Open-source Python release of the IO-PS package
License: MIT License
URL: https://github.com/WoutersResearchGroup/py-IO-PS
Source0: https://mirrors.aliyun.com/pypi/web/packages/3b/07/05bbfac58aa25ef5e35c281cef8fb0bd3689a8f6abeff19bd2e682b93b49/iops-0.5.1.tar.gz
BuildArch: noarch
%description
# py-IO-PS
Public repository of developmental Python code related to research on the input-output product space (IO-PS)
[Described in Bam, W., & De Bruyne, K. (2019). Improving Industrial Policy Intervention: The Case of Steel in South Africa. The Journal of Development Studies, 55(11), 2460–2475. https://doi.org/10.1080/00220388.2018.1528354]
## Package
### Installation
The package is available from the Python Package Index: https://pypi.org/project/iops/
```text
pip install iops
pip install ecomplexity
```
### Usage
CEPII-BACI trade data is a required input (.csv). The BACI data is available at: http://www.cepii.fr/CEPII/fr/bdd_modele/presentation.asp?id=37
Full IO-PS analysis requires a value chain input (.csv). Three columns are required: 'Tier', 'Category' and 'HS Trade Code'.
```python
import pandas as pd
from iops import main
tradedata_df = pd.read_csv('BACI_HSXX_YXXXX_V202001.csv')
valuechain_df = pd.read_csv('X_Value_Chain.csv')
main.iops(tradedata_df,valuechain_df)
```
### Value Chain Output
Results are generated at tier, category and product level. Results are written to an Excel spreadsheet and headless CSV for each.
```text
Tier_Results.csv
Tier_Results.xlsx
Product_Category_Results.csv
Product_Category_Results.xlsx
Product_Results.csv
Product_Results.xlsx
```
### Function
```Python
def iops(tradedata, valuechain=None, countrycode=710, tradedigit=6, statanorm=False):
""" IO-PS calculation function that writes the results to .xls and .csv
Arguments:
tradedata: pandas dataframe containing raw CEPII-BACI trade data.
valuechain: .csv of the value chain the IO-PS will map.
columns - 'Tier', 'Category', 'HS Trade Code'
default - None
countrycode: integer indicating which country the IO-PS will map.
default - 710
tradedigit: Integer of 6 or 4 to indicate the raw trade digit summation level.
default - 6
statanorm: Boolean indicator of literature based or CID-Harvard STATA normalization.
default - False
"""
```
## Future Considerations
* User error warnings
* Investigate use of ecomplexity package fork
* Additional IO-PS metrics
* ECI and distance alignment
## References
### IO-PS
* Bam, W., & De Bruyne, K. (2017). Location policy and downstream mineral processing: A research agenda. Extractive Industries and Society, 4(3), 443–447. https://doi.org/10.1016/j.exis.2017.06.009
* Marais, M., & Bam, W. (2019). Developmental potential of the aerospace industry: the case of South Africa. In 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) (pp. 1–9). IEEE. https://doi.org/10.1109/ICE.2019.8792812
### Economic Complexity and Product Complexity
This packages uses a modified copy of the Growth Lab at Harvard's Center for International Development py-ecomplexity package. The ecomplexity package is used to calculate economic complexity indices: https://github.com/cid-harvard/py-ecomplexity
%package -n python3-iops
Summary: Open-source Python release of the IO-PS package
Provides: python-iops
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-iops
# py-IO-PS
Public repository of developmental Python code related to research on the input-output product space (IO-PS)
[Described in Bam, W., & De Bruyne, K. (2019). Improving Industrial Policy Intervention: The Case of Steel in South Africa. The Journal of Development Studies, 55(11), 2460–2475. https://doi.org/10.1080/00220388.2018.1528354]
## Package
### Installation
The package is available from the Python Package Index: https://pypi.org/project/iops/
```text
pip install iops
pip install ecomplexity
```
### Usage
CEPII-BACI trade data is a required input (.csv). The BACI data is available at: http://www.cepii.fr/CEPII/fr/bdd_modele/presentation.asp?id=37
Full IO-PS analysis requires a value chain input (.csv). Three columns are required: 'Tier', 'Category' and 'HS Trade Code'.
```python
import pandas as pd
from iops import main
tradedata_df = pd.read_csv('BACI_HSXX_YXXXX_V202001.csv')
valuechain_df = pd.read_csv('X_Value_Chain.csv')
main.iops(tradedata_df,valuechain_df)
```
### Value Chain Output
Results are generated at tier, category and product level. Results are written to an Excel spreadsheet and headless CSV for each.
```text
Tier_Results.csv
Tier_Results.xlsx
Product_Category_Results.csv
Product_Category_Results.xlsx
Product_Results.csv
Product_Results.xlsx
```
### Function
```Python
def iops(tradedata, valuechain=None, countrycode=710, tradedigit=6, statanorm=False):
""" IO-PS calculation function that writes the results to .xls and .csv
Arguments:
tradedata: pandas dataframe containing raw CEPII-BACI trade data.
valuechain: .csv of the value chain the IO-PS will map.
columns - 'Tier', 'Category', 'HS Trade Code'
default - None
countrycode: integer indicating which country the IO-PS will map.
default - 710
tradedigit: Integer of 6 or 4 to indicate the raw trade digit summation level.
default - 6
statanorm: Boolean indicator of literature based or CID-Harvard STATA normalization.
default - False
"""
```
## Future Considerations
* User error warnings
* Investigate use of ecomplexity package fork
* Additional IO-PS metrics
* ECI and distance alignment
## References
### IO-PS
* Bam, W., & De Bruyne, K. (2017). Location policy and downstream mineral processing: A research agenda. Extractive Industries and Society, 4(3), 443–447. https://doi.org/10.1016/j.exis.2017.06.009
* Marais, M., & Bam, W. (2019). Developmental potential of the aerospace industry: the case of South Africa. In 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) (pp. 1–9). IEEE. https://doi.org/10.1109/ICE.2019.8792812
### Economic Complexity and Product Complexity
This packages uses a modified copy of the Growth Lab at Harvard's Center for International Development py-ecomplexity package. The ecomplexity package is used to calculate economic complexity indices: https://github.com/cid-harvard/py-ecomplexity
%package help
Summary: Development documents and examples for iops
Provides: python3-iops-doc
%description help
# py-IO-PS
Public repository of developmental Python code related to research on the input-output product space (IO-PS)
[Described in Bam, W., & De Bruyne, K. (2019). Improving Industrial Policy Intervention: The Case of Steel in South Africa. The Journal of Development Studies, 55(11), 2460–2475. https://doi.org/10.1080/00220388.2018.1528354]
## Package
### Installation
The package is available from the Python Package Index: https://pypi.org/project/iops/
```text
pip install iops
pip install ecomplexity
```
### Usage
CEPII-BACI trade data is a required input (.csv). The BACI data is available at: http://www.cepii.fr/CEPII/fr/bdd_modele/presentation.asp?id=37
Full IO-PS analysis requires a value chain input (.csv). Three columns are required: 'Tier', 'Category' and 'HS Trade Code'.
```python
import pandas as pd
from iops import main
tradedata_df = pd.read_csv('BACI_HSXX_YXXXX_V202001.csv')
valuechain_df = pd.read_csv('X_Value_Chain.csv')
main.iops(tradedata_df,valuechain_df)
```
### Value Chain Output
Results are generated at tier, category and product level. Results are written to an Excel spreadsheet and headless CSV for each.
```text
Tier_Results.csv
Tier_Results.xlsx
Product_Category_Results.csv
Product_Category_Results.xlsx
Product_Results.csv
Product_Results.xlsx
```
### Function
```Python
def iops(tradedata, valuechain=None, countrycode=710, tradedigit=6, statanorm=False):
""" IO-PS calculation function that writes the results to .xls and .csv
Arguments:
tradedata: pandas dataframe containing raw CEPII-BACI trade data.
valuechain: .csv of the value chain the IO-PS will map.
columns - 'Tier', 'Category', 'HS Trade Code'
default - None
countrycode: integer indicating which country the IO-PS will map.
default - 710
tradedigit: Integer of 6 or 4 to indicate the raw trade digit summation level.
default - 6
statanorm: Boolean indicator of literature based or CID-Harvard STATA normalization.
default - False
"""
```
## Future Considerations
* User error warnings
* Investigate use of ecomplexity package fork
* Additional IO-PS metrics
* ECI and distance alignment
## References
### IO-PS
* Bam, W., & De Bruyne, K. (2017). Location policy and downstream mineral processing: A research agenda. Extractive Industries and Society, 4(3), 443–447. https://doi.org/10.1016/j.exis.2017.06.009
* Marais, M., & Bam, W. (2019). Developmental potential of the aerospace industry: the case of South Africa. In 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC) (pp. 1–9). IEEE. https://doi.org/10.1109/ICE.2019.8792812
### Economic Complexity and Product Complexity
This packages uses a modified copy of the Growth Lab at Harvard's Center for International Development py-ecomplexity package. The ecomplexity package is used to calculate economic complexity indices: https://github.com/cid-harvard/py-ecomplexity
%prep
%autosetup -n iops-0.5.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-iops -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.1-1
- Package Spec generated
|