summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorCoprDistGit <infra@openeuler.org>2023-05-05 13:13:29 +0000
committerCoprDistGit <infra@openeuler.org>2023-05-05 13:13:29 +0000
commita7cdda2c5964aef7885f2282eb5a18ecb2d04773 (patch)
treefe74f13451f0788f551bcbe92c12bc98f569a428
parent536cbf7869288f5f09726514a9db72fc33765e6a (diff)
automatic import of python-ipfnopeneuler20.03
-rw-r--r--.gitignore1
-rw-r--r--python-ipfn.spec101
-rw-r--r--sources1
3 files changed, 103 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..fc1a895 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/ipfn-1.4.4.tar.gz
diff --git a/python-ipfn.spec b/python-ipfn.spec
new file mode 100644
index 0000000..ce7d8eb
--- /dev/null
+++ b/python-ipfn.spec
@@ -0,0 +1,101 @@
+%global _empty_manifest_terminate_build 0
+Name: python-ipfn
+Version: 1.4.4
+Release: 1
+Summary: Iterative Proportional Fitting with N dimensions, for python
+License: MIT
+URL: https://github.com/Dirguis/ipfn.git
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b8/82/acf73d6e8b3877e3b0ace42aad730bd8ac3b7320a70963092cdc6cc85ec9/ipfn-1.4.4.tar.gz
+BuildArch: noarch
+
+Requires: python3-pandas
+Requires: python3-numpy
+
+%description
+Iterative proportional fitting is an algorithm used is many different fields such as economics or social sciences, to alter results in such a way that aggregates along one or several dimensions match known marginals (or aggregates along these same dimensions).
+The algorithm exists in 2 versions:
+* numpy version, which the fastest by far
+* pandas version, which is much slower but easier to use than the numpy version
+The algorithm recognizes the input variable type and and uses the appropriate version to solve the problem. To install the package:
+* pip install ipfn
+* pip install git+http://github.com/dirguis/ipfn@master
+For more information and examples, please visit:
+* `wikipedia page on ipf <https://en.wikipedia.org/wiki/Iterative_proportional_fitting>`_
+* `slides explaining the methodology and links to specific examples <http://www.demog.berkeley.edu/~eddieh/IPFDescription/AKDOLWDIPFTWOD.pdf>`_
+
+%package -n python3-ipfn
+Summary: Iterative Proportional Fitting with N dimensions, for python
+Provides: python-ipfn
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-ipfn
+Iterative proportional fitting is an algorithm used is many different fields such as economics or social sciences, to alter results in such a way that aggregates along one or several dimensions match known marginals (or aggregates along these same dimensions).
+The algorithm exists in 2 versions:
+* numpy version, which the fastest by far
+* pandas version, which is much slower but easier to use than the numpy version
+The algorithm recognizes the input variable type and and uses the appropriate version to solve the problem. To install the package:
+* pip install ipfn
+* pip install git+http://github.com/dirguis/ipfn@master
+For more information and examples, please visit:
+* `wikipedia page on ipf <https://en.wikipedia.org/wiki/Iterative_proportional_fitting>`_
+* `slides explaining the methodology and links to specific examples <http://www.demog.berkeley.edu/~eddieh/IPFDescription/AKDOLWDIPFTWOD.pdf>`_
+
+%package help
+Summary: Development documents and examples for ipfn
+Provides: python3-ipfn-doc
+%description help
+Iterative proportional fitting is an algorithm used is many different fields such as economics or social sciences, to alter results in such a way that aggregates along one or several dimensions match known marginals (or aggregates along these same dimensions).
+The algorithm exists in 2 versions:
+* numpy version, which the fastest by far
+* pandas version, which is much slower but easier to use than the numpy version
+The algorithm recognizes the input variable type and and uses the appropriate version to solve the problem. To install the package:
+* pip install ipfn
+* pip install git+http://github.com/dirguis/ipfn@master
+For more information and examples, please visit:
+* `wikipedia page on ipf <https://en.wikipedia.org/wiki/Iterative_proportional_fitting>`_
+* `slides explaining the methodology and links to specific examples <http://www.demog.berkeley.edu/~eddieh/IPFDescription/AKDOLWDIPFTWOD.pdf>`_
+
+%prep
+%autosetup -n ipfn-1.4.4
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-ipfn -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.4-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..986299c
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+b8653140a1c33e5aa7d5f8fd551d91c5 ipfn-1.4.4.tar.gz