summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-jai-sdk.spec355
-rw-r--r--sources1
3 files changed, 357 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..8c710d0 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/jai-sdk-0.23.0.tar.gz
diff --git a/python-jai-sdk.spec b/python-jai-sdk.spec
new file mode 100644
index 0000000..5327ef9
--- /dev/null
+++ b/python-jai-sdk.spec
@@ -0,0 +1,355 @@
+%global _empty_manifest_terminate_build 0
+Name: python-jai-sdk
+Version: 0.23.0
+Release: 1
+Summary: JAI - Trust your data
+License: MIT
+URL: https://github.com/jquant/jai-sdk
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/a3/0a/829a3cff28cd700fa27b783e049debaacc90333180341ce3c49455a9d4bf/jai-sdk-0.23.0.tar.gz
+BuildArch: noarch
+
+Requires: python3-numpy
+Requires: python3-pandas
+Requires: python3-tqdm
+Requires: python3-pillow
+Requires: python3-psutil
+Requires: python3-pydantic
+Requires: python3-decouple
+Requires: python3-matplotlib
+Requires: python3-requests
+Requires: python3-scikit-learn
+
+%description
+# Jai SDK - Trust your data
+
+[![PyPI Latest Release](https://img.shields.io/pypi/v/jai-sdk.svg)](https://pypi.org/project/jai-sdk/)
+[![Python Version](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)
+[![Documentation Status](https://readthedocs.org/projects/jai-sdk/badge/?version=latest)](https://jai-sdk.readthedocs.io/en/latest/?badge=latest)
+[![codecov](https://codecov.io/gh/jquant/jai-sdk/branch/main/graph/badge.svg)](https://codecov.io/gh/jquant/jai-sdk)
+[![License](https://img.shields.io/pypi/l/jai-sdk.svg)](https://github.com/jquant/jai-sdk/blob/main/LICENSE)
+[![Code style: yapf](https://img.shields.io/badge/code%20style-yapf-blue)](https://github.com/google/yapf)
+[![Downloads](https://pepy.tech/badge/jai-sdk)](https://pepy.tech/project/jai-sdk)
+
+# Installation
+
+The source code is currently hosted on GitHub at: [https://github.com/jquant/jai-sdk](https://github.com/jquant/jai-sdk)
+
+The latest version of JAI-SDK can be installed from `pip`:
+
+```sh
+pip install jai-sdk --user
+```
+
+Nowadays, JAI supports python 3.7+. For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
+
+# Getting your auth key
+
+JAI requires an auth key to organize and secure collections.
+You can quickly generate your free-forever auth-key by running the command below:
+
+```python
+from jai import get_auth_key
+get_auth_key(email='email@mail.com', firstName='Jai', lastName='Z')
+```
+
+> **_ATTENTION:_** Your auth key will be sent to your e-mail, so please make sure to use a valid address and check your spam folder.
+
+# How does it work?
+
+With JAI, you can train models in the cloud and run inference on your trained models. Besides, you can achieve all your models through a REST API endpoint.
+
+First, you can set your auth key into an environment variable or use a :file:`.env` file or :file:`.ini` file.
+Please check the section [How to configure your auth key](https://jai-sdk.readthedocs.io/en/latest/source/overview/set_authentication.html>) for more information.
+
+Bellow an example of the content of the :file:`.env` file:
+
+```text
+JAI_AUTH="xXxxxXXxXXxXXxXXxXXxXXxXXxxx"
+```
+
+In the below example, we'll show how to train a simple supervised model (regression) using the California housing dataset, run a prediction from this model, and call this prediction directly from the REST API.
+
+```python
+import pandas as pd
+from jai import Jai
+from sklearn.datasets import fetch_california_housing
+
+# Load dataset
+data, labels = fetch_california_housing(as_frame=True, return_X_y=True)
+model_data = pd.concat([data, labels], axis=1)
+
+# Instanciating JAI class
+j = Jai()
+
+# Send data to JAI for feature extraction
+j.fit(
+ name='california_supervised', # JAI collection name
+ data=model_data, # Data to be processed
+ db_type='Supervised', # Your training type ('Supervised', 'SelfSupervised' etc)
+ verbose=2,
+ hyperparams={
+ 'learning_rate': 3e-4,
+ 'pretraining_ratio': 0.8
+ },
+ label={
+ 'task': 'regression',
+ 'label_name': 'MedHouseVal'
+ },
+ overwrite=True)
+# Run prediction
+j.predict(name='california_supervised', data=data)
+```
+
+In this example, you could train a supervised model with the California housing dataset and run a prediction with some data.
+
+JAI supports many other training models, like self-supervised model training.
+Besides, it also can train on different data types, like text and images.
+You can find a complete list of the model types supported by JAI on [The Fit Method](https://jai-sdk.readthedocs.io/en/latest/source/using_jai/fit.html).
+
+# Read our documentation
+
+For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
+
+
+
+
+%package -n python3-jai-sdk
+Summary: JAI - Trust your data
+Provides: python-jai-sdk
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-jai-sdk
+# Jai SDK - Trust your data
+
+[![PyPI Latest Release](https://img.shields.io/pypi/v/jai-sdk.svg)](https://pypi.org/project/jai-sdk/)
+[![Python Version](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)
+[![Documentation Status](https://readthedocs.org/projects/jai-sdk/badge/?version=latest)](https://jai-sdk.readthedocs.io/en/latest/?badge=latest)
+[![codecov](https://codecov.io/gh/jquant/jai-sdk/branch/main/graph/badge.svg)](https://codecov.io/gh/jquant/jai-sdk)
+[![License](https://img.shields.io/pypi/l/jai-sdk.svg)](https://github.com/jquant/jai-sdk/blob/main/LICENSE)
+[![Code style: yapf](https://img.shields.io/badge/code%20style-yapf-blue)](https://github.com/google/yapf)
+[![Downloads](https://pepy.tech/badge/jai-sdk)](https://pepy.tech/project/jai-sdk)
+
+# Installation
+
+The source code is currently hosted on GitHub at: [https://github.com/jquant/jai-sdk](https://github.com/jquant/jai-sdk)
+
+The latest version of JAI-SDK can be installed from `pip`:
+
+```sh
+pip install jai-sdk --user
+```
+
+Nowadays, JAI supports python 3.7+. For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
+
+# Getting your auth key
+
+JAI requires an auth key to organize and secure collections.
+You can quickly generate your free-forever auth-key by running the command below:
+
+```python
+from jai import get_auth_key
+get_auth_key(email='email@mail.com', firstName='Jai', lastName='Z')
+```
+
+> **_ATTENTION:_** Your auth key will be sent to your e-mail, so please make sure to use a valid address and check your spam folder.
+
+# How does it work?
+
+With JAI, you can train models in the cloud and run inference on your trained models. Besides, you can achieve all your models through a REST API endpoint.
+
+First, you can set your auth key into an environment variable or use a :file:`.env` file or :file:`.ini` file.
+Please check the section [How to configure your auth key](https://jai-sdk.readthedocs.io/en/latest/source/overview/set_authentication.html>) for more information.
+
+Bellow an example of the content of the :file:`.env` file:
+
+```text
+JAI_AUTH="xXxxxXXxXXxXXxXXxXXxXXxXXxxx"
+```
+
+In the below example, we'll show how to train a simple supervised model (regression) using the California housing dataset, run a prediction from this model, and call this prediction directly from the REST API.
+
+```python
+import pandas as pd
+from jai import Jai
+from sklearn.datasets import fetch_california_housing
+
+# Load dataset
+data, labels = fetch_california_housing(as_frame=True, return_X_y=True)
+model_data = pd.concat([data, labels], axis=1)
+
+# Instanciating JAI class
+j = Jai()
+
+# Send data to JAI for feature extraction
+j.fit(
+ name='california_supervised', # JAI collection name
+ data=model_data, # Data to be processed
+ db_type='Supervised', # Your training type ('Supervised', 'SelfSupervised' etc)
+ verbose=2,
+ hyperparams={
+ 'learning_rate': 3e-4,
+ 'pretraining_ratio': 0.8
+ },
+ label={
+ 'task': 'regression',
+ 'label_name': 'MedHouseVal'
+ },
+ overwrite=True)
+# Run prediction
+j.predict(name='california_supervised', data=data)
+```
+
+In this example, you could train a supervised model with the California housing dataset and run a prediction with some data.
+
+JAI supports many other training models, like self-supervised model training.
+Besides, it also can train on different data types, like text and images.
+You can find a complete list of the model types supported by JAI on [The Fit Method](https://jai-sdk.readthedocs.io/en/latest/source/using_jai/fit.html).
+
+# Read our documentation
+
+For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
+
+
+
+
+%package help
+Summary: Development documents and examples for jai-sdk
+Provides: python3-jai-sdk-doc
+%description help
+# Jai SDK - Trust your data
+
+[![PyPI Latest Release](https://img.shields.io/pypi/v/jai-sdk.svg)](https://pypi.org/project/jai-sdk/)
+[![Python Version](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)
+[![Documentation Status](https://readthedocs.org/projects/jai-sdk/badge/?version=latest)](https://jai-sdk.readthedocs.io/en/latest/?badge=latest)
+[![codecov](https://codecov.io/gh/jquant/jai-sdk/branch/main/graph/badge.svg)](https://codecov.io/gh/jquant/jai-sdk)
+[![License](https://img.shields.io/pypi/l/jai-sdk.svg)](https://github.com/jquant/jai-sdk/blob/main/LICENSE)
+[![Code style: yapf](https://img.shields.io/badge/code%20style-yapf-blue)](https://github.com/google/yapf)
+[![Downloads](https://pepy.tech/badge/jai-sdk)](https://pepy.tech/project/jai-sdk)
+
+# Installation
+
+The source code is currently hosted on GitHub at: [https://github.com/jquant/jai-sdk](https://github.com/jquant/jai-sdk)
+
+The latest version of JAI-SDK can be installed from `pip`:
+
+```sh
+pip install jai-sdk --user
+```
+
+Nowadays, JAI supports python 3.7+. For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
+
+# Getting your auth key
+
+JAI requires an auth key to organize and secure collections.
+You can quickly generate your free-forever auth-key by running the command below:
+
+```python
+from jai import get_auth_key
+get_auth_key(email='email@mail.com', firstName='Jai', lastName='Z')
+```
+
+> **_ATTENTION:_** Your auth key will be sent to your e-mail, so please make sure to use a valid address and check your spam folder.
+
+# How does it work?
+
+With JAI, you can train models in the cloud and run inference on your trained models. Besides, you can achieve all your models through a REST API endpoint.
+
+First, you can set your auth key into an environment variable or use a :file:`.env` file or :file:`.ini` file.
+Please check the section [How to configure your auth key](https://jai-sdk.readthedocs.io/en/latest/source/overview/set_authentication.html>) for more information.
+
+Bellow an example of the content of the :file:`.env` file:
+
+```text
+JAI_AUTH="xXxxxXXxXXxXXxXXxXXxXXxXXxxx"
+```
+
+In the below example, we'll show how to train a simple supervised model (regression) using the California housing dataset, run a prediction from this model, and call this prediction directly from the REST API.
+
+```python
+import pandas as pd
+from jai import Jai
+from sklearn.datasets import fetch_california_housing
+
+# Load dataset
+data, labels = fetch_california_housing(as_frame=True, return_X_y=True)
+model_data = pd.concat([data, labels], axis=1)
+
+# Instanciating JAI class
+j = Jai()
+
+# Send data to JAI for feature extraction
+j.fit(
+ name='california_supervised', # JAI collection name
+ data=model_data, # Data to be processed
+ db_type='Supervised', # Your training type ('Supervised', 'SelfSupervised' etc)
+ verbose=2,
+ hyperparams={
+ 'learning_rate': 3e-4,
+ 'pretraining_ratio': 0.8
+ },
+ label={
+ 'task': 'regression',
+ 'label_name': 'MedHouseVal'
+ },
+ overwrite=True)
+# Run prediction
+j.predict(name='california_supervised', data=data)
+```
+
+In this example, you could train a supervised model with the California housing dataset and run a prediction with some data.
+
+JAI supports many other training models, like self-supervised model training.
+Besides, it also can train on different data types, like text and images.
+You can find a complete list of the model types supported by JAI on [The Fit Method](https://jai-sdk.readthedocs.io/en/latest/source/using_jai/fit.html).
+
+# Read our documentation
+
+For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
+
+
+
+
+%prep
+%autosetup -n jai-sdk-0.23.0
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-jai-sdk -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.23.0-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..295d2db
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+6c1e74419b59482092f6f68b32cee9fa jai-sdk-0.23.0.tar.gz