1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
|
%global _empty_manifest_terminate_build 0
Name: python-jai-sdk
Version: 0.23.0
Release: 1
Summary: JAI - Trust your data
License: MIT
URL: https://github.com/jquant/jai-sdk
Source0: https://mirrors.aliyun.com/pypi/web/packages/a3/0a/829a3cff28cd700fa27b783e049debaacc90333180341ce3c49455a9d4bf/jai-sdk-0.23.0.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-tqdm
Requires: python3-pillow
Requires: python3-psutil
Requires: python3-pydantic
Requires: python3-decouple
Requires: python3-matplotlib
Requires: python3-requests
Requires: python3-scikit-learn
%description
# Jai SDK - Trust your data
[](https://pypi.org/project/jai-sdk/)
[](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)
[](https://jai-sdk.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/gh/jquant/jai-sdk)
[](https://github.com/jquant/jai-sdk/blob/main/LICENSE)
[](https://github.com/google/yapf)
[](https://pepy.tech/project/jai-sdk)
# Installation
The source code is currently hosted on GitHub at: [https://github.com/jquant/jai-sdk](https://github.com/jquant/jai-sdk)
The latest version of JAI-SDK can be installed from `pip`:
```sh
pip install jai-sdk --user
```
Nowadays, JAI supports python 3.7+. For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
# Getting your auth key
JAI requires an auth key to organize and secure collections.
You can quickly generate your free-forever auth-key by running the command below:
```python
from jai import get_auth_key
get_auth_key(email='email@mail.com', firstName='Jai', lastName='Z')
```
> **_ATTENTION:_** Your auth key will be sent to your e-mail, so please make sure to use a valid address and check your spam folder.
# How does it work?
With JAI, you can train models in the cloud and run inference on your trained models. Besides, you can achieve all your models through a REST API endpoint.
First, you can set your auth key into an environment variable or use a :file:`.env` file or :file:`.ini` file.
Please check the section [How to configure your auth key](https://jai-sdk.readthedocs.io/en/latest/source/overview/set_authentication.html>) for more information.
Bellow an example of the content of the :file:`.env` file:
```text
JAI_AUTH="xXxxxXXxXXxXXxXXxXXxXXxXXxxx"
```
In the below example, we'll show how to train a simple supervised model (regression) using the California housing dataset, run a prediction from this model, and call this prediction directly from the REST API.
```python
import pandas as pd
from jai import Jai
from sklearn.datasets import fetch_california_housing
# Load dataset
data, labels = fetch_california_housing(as_frame=True, return_X_y=True)
model_data = pd.concat([data, labels], axis=1)
# Instanciating JAI class
j = Jai()
# Send data to JAI for feature extraction
j.fit(
name='california_supervised', # JAI collection name
data=model_data, # Data to be processed
db_type='Supervised', # Your training type ('Supervised', 'SelfSupervised' etc)
verbose=2,
hyperparams={
'learning_rate': 3e-4,
'pretraining_ratio': 0.8
},
label={
'task': 'regression',
'label_name': 'MedHouseVal'
},
overwrite=True)
# Run prediction
j.predict(name='california_supervised', data=data)
```
In this example, you could train a supervised model with the California housing dataset and run a prediction with some data.
JAI supports many other training models, like self-supervised model training.
Besides, it also can train on different data types, like text and images.
You can find a complete list of the model types supported by JAI on [The Fit Method](https://jai-sdk.readthedocs.io/en/latest/source/using_jai/fit.html).
# Read our documentation
For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
%package -n python3-jai-sdk
Summary: JAI - Trust your data
Provides: python-jai-sdk
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-jai-sdk
# Jai SDK - Trust your data
[](https://pypi.org/project/jai-sdk/)
[](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)
[](https://jai-sdk.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/gh/jquant/jai-sdk)
[](https://github.com/jquant/jai-sdk/blob/main/LICENSE)
[](https://github.com/google/yapf)
[](https://pepy.tech/project/jai-sdk)
# Installation
The source code is currently hosted on GitHub at: [https://github.com/jquant/jai-sdk](https://github.com/jquant/jai-sdk)
The latest version of JAI-SDK can be installed from `pip`:
```sh
pip install jai-sdk --user
```
Nowadays, JAI supports python 3.7+. For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
# Getting your auth key
JAI requires an auth key to organize and secure collections.
You can quickly generate your free-forever auth-key by running the command below:
```python
from jai import get_auth_key
get_auth_key(email='email@mail.com', firstName='Jai', lastName='Z')
```
> **_ATTENTION:_** Your auth key will be sent to your e-mail, so please make sure to use a valid address and check your spam folder.
# How does it work?
With JAI, you can train models in the cloud and run inference on your trained models. Besides, you can achieve all your models through a REST API endpoint.
First, you can set your auth key into an environment variable or use a :file:`.env` file or :file:`.ini` file.
Please check the section [How to configure your auth key](https://jai-sdk.readthedocs.io/en/latest/source/overview/set_authentication.html>) for more information.
Bellow an example of the content of the :file:`.env` file:
```text
JAI_AUTH="xXxxxXXxXXxXXxXXxXXxXXxXXxxx"
```
In the below example, we'll show how to train a simple supervised model (regression) using the California housing dataset, run a prediction from this model, and call this prediction directly from the REST API.
```python
import pandas as pd
from jai import Jai
from sklearn.datasets import fetch_california_housing
# Load dataset
data, labels = fetch_california_housing(as_frame=True, return_X_y=True)
model_data = pd.concat([data, labels], axis=1)
# Instanciating JAI class
j = Jai()
# Send data to JAI for feature extraction
j.fit(
name='california_supervised', # JAI collection name
data=model_data, # Data to be processed
db_type='Supervised', # Your training type ('Supervised', 'SelfSupervised' etc)
verbose=2,
hyperparams={
'learning_rate': 3e-4,
'pretraining_ratio': 0.8
},
label={
'task': 'regression',
'label_name': 'MedHouseVal'
},
overwrite=True)
# Run prediction
j.predict(name='california_supervised', data=data)
```
In this example, you could train a supervised model with the California housing dataset and run a prediction with some data.
JAI supports many other training models, like self-supervised model training.
Besides, it also can train on different data types, like text and images.
You can find a complete list of the model types supported by JAI on [The Fit Method](https://jai-sdk.readthedocs.io/en/latest/source/using_jai/fit.html).
# Read our documentation
For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
%package help
Summary: Development documents and examples for jai-sdk
Provides: python3-jai-sdk-doc
%description help
# Jai SDK - Trust your data
[](https://pypi.org/project/jai-sdk/)
[](https://img.shields.io/badge/python-3.7%20%7C%203.8-blue)
[](https://jai-sdk.readthedocs.io/en/latest/?badge=latest)
[](https://codecov.io/gh/jquant/jai-sdk)
[](https://github.com/jquant/jai-sdk/blob/main/LICENSE)
[](https://github.com/google/yapf)
[](https://pepy.tech/project/jai-sdk)
# Installation
The source code is currently hosted on GitHub at: [https://github.com/jquant/jai-sdk](https://github.com/jquant/jai-sdk)
The latest version of JAI-SDK can be installed from `pip`:
```sh
pip install jai-sdk --user
```
Nowadays, JAI supports python 3.7+. For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
# Getting your auth key
JAI requires an auth key to organize and secure collections.
You can quickly generate your free-forever auth-key by running the command below:
```python
from jai import get_auth_key
get_auth_key(email='email@mail.com', firstName='Jai', lastName='Z')
```
> **_ATTENTION:_** Your auth key will be sent to your e-mail, so please make sure to use a valid address and check your spam folder.
# How does it work?
With JAI, you can train models in the cloud and run inference on your trained models. Besides, you can achieve all your models through a REST API endpoint.
First, you can set your auth key into an environment variable or use a :file:`.env` file or :file:`.ini` file.
Please check the section [How to configure your auth key](https://jai-sdk.readthedocs.io/en/latest/source/overview/set_authentication.html>) for more information.
Bellow an example of the content of the :file:`.env` file:
```text
JAI_AUTH="xXxxxXXxXXxXXxXXxXXxXXxXXxxx"
```
In the below example, we'll show how to train a simple supervised model (regression) using the California housing dataset, run a prediction from this model, and call this prediction directly from the REST API.
```python
import pandas as pd
from jai import Jai
from sklearn.datasets import fetch_california_housing
# Load dataset
data, labels = fetch_california_housing(as_frame=True, return_X_y=True)
model_data = pd.concat([data, labels], axis=1)
# Instanciating JAI class
j = Jai()
# Send data to JAI for feature extraction
j.fit(
name='california_supervised', # JAI collection name
data=model_data, # Data to be processed
db_type='Supervised', # Your training type ('Supervised', 'SelfSupervised' etc)
verbose=2,
hyperparams={
'learning_rate': 3e-4,
'pretraining_ratio': 0.8
},
label={
'task': 'regression',
'label_name': 'MedHouseVal'
},
overwrite=True)
# Run prediction
j.predict(name='california_supervised', data=data)
```
In this example, you could train a supervised model with the California housing dataset and run a prediction with some data.
JAI supports many other training models, like self-supervised model training.
Besides, it also can train on different data types, like text and images.
You can find a complete list of the model types supported by JAI on [The Fit Method](https://jai-sdk.readthedocs.io/en/latest/source/using_jai/fit.html).
# Read our documentation
For more information, here is our [documentation](https://jai-sdk.readthedocs.io/en/latest/).
%prep
%autosetup -n jai-sdk-0.23.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-jai-sdk -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 0.23.0-1
- Package Spec generated
|