1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
|
%global _empty_manifest_terminate_build 0
Name: python-jiwer
Version: 3.0.1
Release: 1
Summary: Evaluate your speech-to-text system with similarity measures such as word error rate (WER)
License: Apache-2.0
URL: https://github.com/jitsi/jiwer
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/96/b1/ebacdf7d82d92d3ab93bdaf9f0657782e59cf734ad336e331a8806f2bbf7/jiwer-3.0.1.tar.gz
BuildArch: noarch
Requires: python3-rapidfuzz
Requires: python3-click
%description
# JiWER
JiWER is a simple and fast python package to evaluate an automatic speech recognition system.
It supports the following measures:
1. word error rate (WER)
2. match error rate (MER)
3. word information lost (WIL)
4. word information preserved (WIP)
5. character error rate (CER)
These measures are computed with the use of the minimum-edit distance between one or more reference and hypothesis sentences.
The minimum-edit distance is calculated using [RapidFuzz](https://github.com/maxbachmann/RapidFuzz), which uses C++ under the hood, and is therefore faster than a pure python implementation.
## Documentation
For further info, see the documentation at [jitsi.github.io/jiwer](https://jitsi.github.io/jiwer).
## Installation
You should be able to install this package using [poetry](https://python-poetry.org/docs/):
```
$ poetry add jiwer
```
Or, if you prefer old-fashioned pip and you're using Python >= `3.7`:
```bash
$ pip install jiwer
```
## Usage
The most simple use-case is computing the word error rate between two strings:
```python
from jiwer import wer
reference = "hello world"
hypothesis = "hello duck"
error = wer(reference, hypothesis)
```
## Licence
The jiwer package is released under the `Apache License, Version 2.0` licence by [8x8](https://www.8x8.com/).
For further information, see [`LICENCE`](./LICENSE).
## Reference
_For a comparison between WER, MER and WIL, see: \
Morris, Andrew & Maier, Viktoria & Green, Phil. (2004). [From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.](https://www.researchgate.net/publication/221478089_From_WER_and_RIL_to_MER_and_WIL_improved_evaluation_measures_for_connected_speech_recognition)_
%package -n python3-jiwer
Summary: Evaluate your speech-to-text system with similarity measures such as word error rate (WER)
Provides: python-jiwer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-jiwer
# JiWER
JiWER is a simple and fast python package to evaluate an automatic speech recognition system.
It supports the following measures:
1. word error rate (WER)
2. match error rate (MER)
3. word information lost (WIL)
4. word information preserved (WIP)
5. character error rate (CER)
These measures are computed with the use of the minimum-edit distance between one or more reference and hypothesis sentences.
The minimum-edit distance is calculated using [RapidFuzz](https://github.com/maxbachmann/RapidFuzz), which uses C++ under the hood, and is therefore faster than a pure python implementation.
## Documentation
For further info, see the documentation at [jitsi.github.io/jiwer](https://jitsi.github.io/jiwer).
## Installation
You should be able to install this package using [poetry](https://python-poetry.org/docs/):
```
$ poetry add jiwer
```
Or, if you prefer old-fashioned pip and you're using Python >= `3.7`:
```bash
$ pip install jiwer
```
## Usage
The most simple use-case is computing the word error rate between two strings:
```python
from jiwer import wer
reference = "hello world"
hypothesis = "hello duck"
error = wer(reference, hypothesis)
```
## Licence
The jiwer package is released under the `Apache License, Version 2.0` licence by [8x8](https://www.8x8.com/).
For further information, see [`LICENCE`](./LICENSE).
## Reference
_For a comparison between WER, MER and WIL, see: \
Morris, Andrew & Maier, Viktoria & Green, Phil. (2004). [From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.](https://www.researchgate.net/publication/221478089_From_WER_and_RIL_to_MER_and_WIL_improved_evaluation_measures_for_connected_speech_recognition)_
%package help
Summary: Development documents and examples for jiwer
Provides: python3-jiwer-doc
%description help
# JiWER
JiWER is a simple and fast python package to evaluate an automatic speech recognition system.
It supports the following measures:
1. word error rate (WER)
2. match error rate (MER)
3. word information lost (WIL)
4. word information preserved (WIP)
5. character error rate (CER)
These measures are computed with the use of the minimum-edit distance between one or more reference and hypothesis sentences.
The minimum-edit distance is calculated using [RapidFuzz](https://github.com/maxbachmann/RapidFuzz), which uses C++ under the hood, and is therefore faster than a pure python implementation.
## Documentation
For further info, see the documentation at [jitsi.github.io/jiwer](https://jitsi.github.io/jiwer).
## Installation
You should be able to install this package using [poetry](https://python-poetry.org/docs/):
```
$ poetry add jiwer
```
Or, if you prefer old-fashioned pip and you're using Python >= `3.7`:
```bash
$ pip install jiwer
```
## Usage
The most simple use-case is computing the word error rate between two strings:
```python
from jiwer import wer
reference = "hello world"
hypothesis = "hello duck"
error = wer(reference, hypothesis)
```
## Licence
The jiwer package is released under the `Apache License, Version 2.0` licence by [8x8](https://www.8x8.com/).
For further information, see [`LICENCE`](./LICENSE).
## Reference
_For a comparison between WER, MER and WIL, see: \
Morris, Andrew & Maier, Viktoria & Green, Phil. (2004). [From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.](https://www.researchgate.net/publication/221478089_From_WER_and_RIL_to_MER_and_WIL_improved_evaluation_measures_for_connected_speech_recognition)_
%prep
%autosetup -n jiwer-3.0.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-jiwer -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 3.0.1-1
- Package Spec generated
|