summaryrefslogtreecommitdiff
path: root/python-jmetalpy.spec
blob: 77aa8b0ece34f7753a4a69e0c177a6b5012e04e6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
%global _empty_manifest_terminate_build 0
Name:		python-jmetalpy
Version:	1.6.0
Release:	1
Summary:	Python version of the jMetal framework
License:	MIT
URL:		https://github.com/jMetal/jMetalPy
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b7/29/ab3d41a6c5318ba8a438ad301e463ca1faa381c39f5c53871c86d3dfc504/jmetalpy-1.6.0.tar.gz
BuildArch:	noarch

Requires:	python3-tqdm
Requires:	python3-numpy
Requires:	python3-pandas
Requires:	python3-plotly
Requires:	python3-matplotlib
Requires:	python3-scipy
Requires:	python3-statsmodels
Requires:	python3-dask[complete]
Requires:	python3-distributed
Requires:	python3-pyspark
Requires:	python3-isort
Requires:	python3-black
Requires:	python3-mypy
Requires:	python3-mockito
Requires:	python3-PyHamcrest
Requires:	python3-isort
Requires:	python3-black
Requires:	python3-mypy
Requires:	python3-dask[complete]
Requires:	python3-distributed
Requires:	python3-pyspark
Requires:	python3-mockito
Requires:	python3-PyHamcrest

%description
![jMetalPy](docs/source/jmetalpy.png)

[![CI](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml/badge.svg)](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml)
[![PyPI Python version](https://img.shields.io/pypi/pyversions/jMetalPy.svg)]()
[![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.swevo.2019.100598-blue)](https://doi.org/10.1016/j.swevo.2019.100598)
[![PyPI License](https://img.shields.io/pypi/l/jMetalPy.svg)]()
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

A paper introducing jMetalPy is available at: https://doi.org/10.1016/j.swevo.2019.100598

### Table of Contents
- [Installation](#installation)
- [Usage](#hello-world-)
- [Features](#features)
- [Changelog](#changelog)
- [License](#license)

## Installation

You can install the latest version of jMetalPy with `pip`, 

```console
pip install jmetalpy  # or "jmetalpy[distributed]"
```

<details><summary><b>Notes on installing with <tt>pip</tt></b></summary>
<p>

jMetalPy includes features for parallel and distributed computing based on [pySpark](https://spark.apache.org/docs/latest/api/python/index.html) and [Dask](https://dask.org/).

These (extra) dependencies are *not* automatically installed when running `pip`, which only comprises the core functionality of the framework (enough for most users):

```console
pip install jmetalpy
```

This is the equivalent of running: 

```console
pip install "jmetalpy[core]"
```

Other supported commands are listed next:

```console
pip install "jmetalpy[dev]"  # Install requirements for development
pip install "jmetalpy[distributed]"  # Install requirements for parallel/distributed computing
pip install "jmetalpy[complete]"  # Install all requirements
```

</p>
</details>

## Hello, world! 👋

Examples of configuring and running all the included algorithms are located [in the documentation](https://jmetal.github.io/jMetalPy/multiobjective.algorithms.html).

```python
from jmetal.algorithm.multiobjective import NSGAII
from jmetal.operator import SBXCrossover, PolynomialMutation
from jmetal.problem import ZDT1
from jmetal.util.termination_criterion import StoppingByEvaluations

problem = ZDT1()

algorithm = NSGAII(
    problem=problem,
    population_size=100,
    offspring_population_size=100,
    mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
    crossover=SBXCrossover(probability=1.0, distribution_index=20),
    termination_criterion=StoppingByEvaluations(max_evaluations=25000)
)

algorithm.run()
```

We can then proceed to explore the results:

```python
from jmetal.util.solution import get_non_dominated_solutions, print_function_values_to_file, \ 
    print_variables_to_file

front = get_non_dominated_solutions(algorithm.get_result())

# save to files
print_function_values_to_file(front, 'FUN.NSGAII.ZDT1')
print_variables_to_file(front, 'VAR.NSGAII.ZDT1')
```

Or visualize the Pareto front approximation produced by the algorithm:

```python
from jmetal.lab.visualization import Plot

plot_front = Plot(title='Pareto front approximation', axis_labels=['x', 'y'])
plot_front.plot(front, label='NSGAII-ZDT1', filename='NSGAII-ZDT1', format='png')
```

<img src=docs/source/_static/NSGAII-ZDT1.png width=450 alt="Pareto front approximation">

## Features
The current release of jMetalPy (v1.5.7) contains the following components:

* Algorithms: local search, genetic algorithm, evolution strategy, simulated annealing, random search, NSGA-II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, MOEA/D-IEpsilon, GDE3, SPEA2, HYPE, IBEA. Preference articulation-based algorithms (G-NSGA-II, G-GDE3, G-SPEA2, SMPSO/RP); Dynamic versions of NSGA-II, SMPSO, and GDE3.
* Parallel computing based on Apache Spark and Dask.
* Benchmark problems: ZDT1-6, DTLZ1-2, FDA, LZ09, LIR-CMOP, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka).
* Encodings: real, binary, permutations.
* Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random).
* Quality indicators: hypervolume, additive epsilon, GD, IGD.
* Pareto front approximation plotting in real-time, static or interactive.
* Experiment class for performing studies either alone or alongside [jMetal](https://github.com/jMetal/jMetal).
* Pairwise and multiple hypothesis testing for statistical analysis, including several frequentist and Bayesian testing methods, critical distance plots and posterior diagrams.

| ![Scatter plot 2D](docs/source/_static/2D.gif) | ![Scatter plot 3D](docs/source/_static/3D.gif) |
|-------------- | ----------------  |
| ![Parallel coordinates](docs/source/_static/p-c.gif) | ![Interactive chord plot](docs/source/_static/chordplot.gif) |

## Changelog

* [v1.6.0] Refactor class Problem, the single-objective genetic algorithm can solve constrained problems, performance improvements in NSGA-II, generation of Latex tables summarizing the results of the Wilcoxon rank sum test, added a notebook folder with examples.
* [v1.5.7] Use of linters for catching errors and formatters to fix style, minor bug fixes.
* [v1.5.6] Removed warnings when using Python 3.8.
* [v1.5.5] Minor bug fixes.
* [v1.5.4] Refactored quality indicators to accept numpy array as input parameter.
* [v1.5.4] Added [CompositeSolution](https://github.com/jMetal/jMetalPy/blob/master/jmetal/core/solution.py#L111) class to support mixed combinatorial problems. [#69](https://github.com/jMetal/jMetalPy/issues/69)

## License

This project is licensed under the terms of the MIT - see the [LICENSE](LICENSE) file for details.


%package -n python3-jmetalpy
Summary:	Python version of the jMetal framework
Provides:	python-jmetalpy
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-jmetalpy
![jMetalPy](docs/source/jmetalpy.png)

[![CI](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml/badge.svg)](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml)
[![PyPI Python version](https://img.shields.io/pypi/pyversions/jMetalPy.svg)]()
[![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.swevo.2019.100598-blue)](https://doi.org/10.1016/j.swevo.2019.100598)
[![PyPI License](https://img.shields.io/pypi/l/jMetalPy.svg)]()
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

A paper introducing jMetalPy is available at: https://doi.org/10.1016/j.swevo.2019.100598

### Table of Contents
- [Installation](#installation)
- [Usage](#hello-world-)
- [Features](#features)
- [Changelog](#changelog)
- [License](#license)

## Installation

You can install the latest version of jMetalPy with `pip`, 

```console
pip install jmetalpy  # or "jmetalpy[distributed]"
```

<details><summary><b>Notes on installing with <tt>pip</tt></b></summary>
<p>

jMetalPy includes features for parallel and distributed computing based on [pySpark](https://spark.apache.org/docs/latest/api/python/index.html) and [Dask](https://dask.org/).

These (extra) dependencies are *not* automatically installed when running `pip`, which only comprises the core functionality of the framework (enough for most users):

```console
pip install jmetalpy
```

This is the equivalent of running: 

```console
pip install "jmetalpy[core]"
```

Other supported commands are listed next:

```console
pip install "jmetalpy[dev]"  # Install requirements for development
pip install "jmetalpy[distributed]"  # Install requirements for parallel/distributed computing
pip install "jmetalpy[complete]"  # Install all requirements
```

</p>
</details>

## Hello, world! 👋

Examples of configuring and running all the included algorithms are located [in the documentation](https://jmetal.github.io/jMetalPy/multiobjective.algorithms.html).

```python
from jmetal.algorithm.multiobjective import NSGAII
from jmetal.operator import SBXCrossover, PolynomialMutation
from jmetal.problem import ZDT1
from jmetal.util.termination_criterion import StoppingByEvaluations

problem = ZDT1()

algorithm = NSGAII(
    problem=problem,
    population_size=100,
    offspring_population_size=100,
    mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
    crossover=SBXCrossover(probability=1.0, distribution_index=20),
    termination_criterion=StoppingByEvaluations(max_evaluations=25000)
)

algorithm.run()
```

We can then proceed to explore the results:

```python
from jmetal.util.solution import get_non_dominated_solutions, print_function_values_to_file, \ 
    print_variables_to_file

front = get_non_dominated_solutions(algorithm.get_result())

# save to files
print_function_values_to_file(front, 'FUN.NSGAII.ZDT1')
print_variables_to_file(front, 'VAR.NSGAII.ZDT1')
```

Or visualize the Pareto front approximation produced by the algorithm:

```python
from jmetal.lab.visualization import Plot

plot_front = Plot(title='Pareto front approximation', axis_labels=['x', 'y'])
plot_front.plot(front, label='NSGAII-ZDT1', filename='NSGAII-ZDT1', format='png')
```

<img src=docs/source/_static/NSGAII-ZDT1.png width=450 alt="Pareto front approximation">

## Features
The current release of jMetalPy (v1.5.7) contains the following components:

* Algorithms: local search, genetic algorithm, evolution strategy, simulated annealing, random search, NSGA-II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, MOEA/D-IEpsilon, GDE3, SPEA2, HYPE, IBEA. Preference articulation-based algorithms (G-NSGA-II, G-GDE3, G-SPEA2, SMPSO/RP); Dynamic versions of NSGA-II, SMPSO, and GDE3.
* Parallel computing based on Apache Spark and Dask.
* Benchmark problems: ZDT1-6, DTLZ1-2, FDA, LZ09, LIR-CMOP, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka).
* Encodings: real, binary, permutations.
* Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random).
* Quality indicators: hypervolume, additive epsilon, GD, IGD.
* Pareto front approximation plotting in real-time, static or interactive.
* Experiment class for performing studies either alone or alongside [jMetal](https://github.com/jMetal/jMetal).
* Pairwise and multiple hypothesis testing for statistical analysis, including several frequentist and Bayesian testing methods, critical distance plots and posterior diagrams.

| ![Scatter plot 2D](docs/source/_static/2D.gif) | ![Scatter plot 3D](docs/source/_static/3D.gif) |
|-------------- | ----------------  |
| ![Parallel coordinates](docs/source/_static/p-c.gif) | ![Interactive chord plot](docs/source/_static/chordplot.gif) |

## Changelog

* [v1.6.0] Refactor class Problem, the single-objective genetic algorithm can solve constrained problems, performance improvements in NSGA-II, generation of Latex tables summarizing the results of the Wilcoxon rank sum test, added a notebook folder with examples.
* [v1.5.7] Use of linters for catching errors and formatters to fix style, minor bug fixes.
* [v1.5.6] Removed warnings when using Python 3.8.
* [v1.5.5] Minor bug fixes.
* [v1.5.4] Refactored quality indicators to accept numpy array as input parameter.
* [v1.5.4] Added [CompositeSolution](https://github.com/jMetal/jMetalPy/blob/master/jmetal/core/solution.py#L111) class to support mixed combinatorial problems. [#69](https://github.com/jMetal/jMetalPy/issues/69)

## License

This project is licensed under the terms of the MIT - see the [LICENSE](LICENSE) file for details.


%package help
Summary:	Development documents and examples for jmetalpy
Provides:	python3-jmetalpy-doc
%description help
![jMetalPy](docs/source/jmetalpy.png)

[![CI](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml/badge.svg)](https://github.com/jMetal/jMetalPy/actions/workflows/ci.yml)
[![PyPI Python version](https://img.shields.io/pypi/pyversions/jMetalPy.svg)]()
[![DOI](https://img.shields.io/badge/DOI-10.1016%2Fj.swevo.2019.100598-blue)](https://doi.org/10.1016/j.swevo.2019.100598)
[![PyPI License](https://img.shields.io/pypi/l/jMetalPy.svg)]()
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)

A paper introducing jMetalPy is available at: https://doi.org/10.1016/j.swevo.2019.100598

### Table of Contents
- [Installation](#installation)
- [Usage](#hello-world-)
- [Features](#features)
- [Changelog](#changelog)
- [License](#license)

## Installation

You can install the latest version of jMetalPy with `pip`, 

```console
pip install jmetalpy  # or "jmetalpy[distributed]"
```

<details><summary><b>Notes on installing with <tt>pip</tt></b></summary>
<p>

jMetalPy includes features for parallel and distributed computing based on [pySpark](https://spark.apache.org/docs/latest/api/python/index.html) and [Dask](https://dask.org/).

These (extra) dependencies are *not* automatically installed when running `pip`, which only comprises the core functionality of the framework (enough for most users):

```console
pip install jmetalpy
```

This is the equivalent of running: 

```console
pip install "jmetalpy[core]"
```

Other supported commands are listed next:

```console
pip install "jmetalpy[dev]"  # Install requirements for development
pip install "jmetalpy[distributed]"  # Install requirements for parallel/distributed computing
pip install "jmetalpy[complete]"  # Install all requirements
```

</p>
</details>

## Hello, world! 👋

Examples of configuring and running all the included algorithms are located [in the documentation](https://jmetal.github.io/jMetalPy/multiobjective.algorithms.html).

```python
from jmetal.algorithm.multiobjective import NSGAII
from jmetal.operator import SBXCrossover, PolynomialMutation
from jmetal.problem import ZDT1
from jmetal.util.termination_criterion import StoppingByEvaluations

problem = ZDT1()

algorithm = NSGAII(
    problem=problem,
    population_size=100,
    offspring_population_size=100,
    mutation=PolynomialMutation(probability=1.0 / problem.number_of_variables, distribution_index=20),
    crossover=SBXCrossover(probability=1.0, distribution_index=20),
    termination_criterion=StoppingByEvaluations(max_evaluations=25000)
)

algorithm.run()
```

We can then proceed to explore the results:

```python
from jmetal.util.solution import get_non_dominated_solutions, print_function_values_to_file, \ 
    print_variables_to_file

front = get_non_dominated_solutions(algorithm.get_result())

# save to files
print_function_values_to_file(front, 'FUN.NSGAII.ZDT1')
print_variables_to_file(front, 'VAR.NSGAII.ZDT1')
```

Or visualize the Pareto front approximation produced by the algorithm:

```python
from jmetal.lab.visualization import Plot

plot_front = Plot(title='Pareto front approximation', axis_labels=['x', 'y'])
plot_front.plot(front, label='NSGAII-ZDT1', filename='NSGAII-ZDT1', format='png')
```

<img src=docs/source/_static/NSGAII-ZDT1.png width=450 alt="Pareto front approximation">

## Features
The current release of jMetalPy (v1.5.7) contains the following components:

* Algorithms: local search, genetic algorithm, evolution strategy, simulated annealing, random search, NSGA-II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, MOEA/D-IEpsilon, GDE3, SPEA2, HYPE, IBEA. Preference articulation-based algorithms (G-NSGA-II, G-GDE3, G-SPEA2, SMPSO/RP); Dynamic versions of NSGA-II, SMPSO, and GDE3.
* Parallel computing based on Apache Spark and Dask.
* Benchmark problems: ZDT1-6, DTLZ1-2, FDA, LZ09, LIR-CMOP, unconstrained (Kursawe, Fonseca, Schaffer, Viennet2), constrained (Srinivas, Tanaka).
* Encodings: real, binary, permutations.
* Operators: selection (binary tournament, ranking and crowding distance, random, nary random, best solution), crossover (single-point, SBX), mutation (bit-blip, polynomial, uniform, random).
* Quality indicators: hypervolume, additive epsilon, GD, IGD.
* Pareto front approximation plotting in real-time, static or interactive.
* Experiment class for performing studies either alone or alongside [jMetal](https://github.com/jMetal/jMetal).
* Pairwise and multiple hypothesis testing for statistical analysis, including several frequentist and Bayesian testing methods, critical distance plots and posterior diagrams.

| ![Scatter plot 2D](docs/source/_static/2D.gif) | ![Scatter plot 3D](docs/source/_static/3D.gif) |
|-------------- | ----------------  |
| ![Parallel coordinates](docs/source/_static/p-c.gif) | ![Interactive chord plot](docs/source/_static/chordplot.gif) |

## Changelog

* [v1.6.0] Refactor class Problem, the single-objective genetic algorithm can solve constrained problems, performance improvements in NSGA-II, generation of Latex tables summarizing the results of the Wilcoxon rank sum test, added a notebook folder with examples.
* [v1.5.7] Use of linters for catching errors and formatters to fix style, minor bug fixes.
* [v1.5.6] Removed warnings when using Python 3.8.
* [v1.5.5] Minor bug fixes.
* [v1.5.4] Refactored quality indicators to accept numpy array as input parameter.
* [v1.5.4] Added [CompositeSolution](https://github.com/jMetal/jMetalPy/blob/master/jmetal/core/solution.py#L111) class to support mixed combinatorial problems. [#69](https://github.com/jMetal/jMetalPy/issues/69)

## License

This project is licensed under the terms of the MIT - see the [LICENSE](LICENSE) file for details.


%prep
%autosetup -n jmetalpy-1.6.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-jmetalpy -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 1.6.0-1
- Package Spec generated