summaryrefslogtreecommitdiff
path: root/python-json-flattener.spec
blob: 7bc78528c2a15478619eae3079f2e8c796c75ea4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
%global _empty_manifest_terminate_build 0
Name:		python-json-flattener
Version:	0.1.9
Release:	1
Summary:	Python library for denormalizing nested dicts or json objects to tables and back
License:	BSD
URL:		https://github.com/cmungall/json-flattener
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/6d/77/b00e46d904818826275661a690532d3a3a43a4ded0264b2d7fcdb5c0feea/json_flattener-0.1.9.tar.gz
BuildArch:	noarch

Requires:	python3-click
Requires:	python3-pyyaml

%description
# json-flattener

Python library for denormalizing/flattening lists of complex objects to tables/data frames, with roundtripping

## Notebook Example

[EXAMPLE.ipynb](https://github.com/cmungall/json-flattener/blob/main/EXAMPLE.ipynb)

## Description

Given YAML/JSON/JSON-Lines such as:

```yaml
- id: S001
  name: Lord of the Rings
  genres:
    - fantasy
  creator:
    name: JRR Tolkein
    from_country: England
  books:
    - id: S001.1
      name: Fellowship of the Ring
      price: 5.99
      summary: Hobbits
    - id: S001.2
      name: The Two Towers
      price: 5.99
      summary: More hobbits
    - id: S001.3
      name: Return of the King
      price: 6.99
      summary: Yet more hobbits
- id: S002
  name: The Culture Series
  genres:
    - scifi
  creator:
    name: Ian M Banks
    from_country: Scotland
  books:
    - id: S002.1
      name: Consider Phlebas
      price: 5.99
    - id: S002.2
      name: Player of Games
      price: 5.99
```

Denormalize using `jfl` command:

```bash
jfl flatten -C creator=flat -C books=multivalued -i examples/books1.yaml -o examples/books1-flattened.tsv
```



|id|name|genres|creator_name|creator_from_country|books_name|books_summary|books_price|books_id|creator_genres
|---|---|---|---|---|---|---|---|---|---|
|S001|Lord of the Rings|[fantasy]|JRR Tolkein|England|[Fellowship of the Ring\|The Two Towers\|Return of the King]|[Hobbits\|More hobbits\|Yet more hobbits]|[5.99\|5.99\|6.99]|[S001.1\|S001.2\|S001.3]|
|S002|The Culture Series|[scifi]|Ian M Banks|Scotland|[Consider Phlebas\|Player of Games]||[5.99\|5.99]|[S002.1\|S002.2]|


Convert back to JSON/YAML:

```bash
jfl unflatten -C creator=flat -C books=multivalued -i examples/books1.tsv -o examples/books1.yaml
```



This library also allows complex fields to be directly serialized as json or yaml (the default is to append `_json` to the key). For example:

```bash
jfl flatten -C creator=json -C books=json -i examples/books1.yaml -o examples/books1-jsonified.tsv
```

|id|name|genres|creator_json|books_json|
|---|---|---|---|---|
|S001|Lord of the Rings|[fantasy]|{\"name\": \"JRR Tolkein\", \"from_country\": \"England\"}|[{\"id\": \"S001.1\", \"name\": \"Fellowship of the Ring\", \"summary\": \"Hobbits\", \"price\": 5.99}, {\"id\": \"S001.2\", \"name\": \"The Two Towers\", \"summary\": \"More hobbits\", \"price\": 5.99}, {\"id\": \"S001.3\", \"name\": \"Return of the King\", \"summary\": \"Yet more hobbits\", \"price\": 6.99}]|
|S002|The Culture Series|[scifi]|{\"name\": \"Ian M Banks\", \"from_country\": \"Scotland\"}|[{\"id\": \"S002.1\", \"name\": \"Consider Phlebas\", \"price\": 5.99}, {\"id\": \"S002.2\", \"name\": \"Player of Games\", \"price\": 5.99}]|
|S003|Book of the New Sun|[scifi, fantasy]|{\"name\": \"Gene Wolfe\", \"genres\": [\"scifi\", \"fantasy\"], \"from_country\": \"USA\"}|[{\"id\": \"S003.1\", \"name\": \"Shadow of the Torturer\"}, {\"id\": \"S003.2\", \"name\": \"Claw of the Conciliator\", \"price\": 6.99}]|
|S004|Example with single book||{\"name\": \"Ms Writer\", \"genres\": [\"romance\"], \"from_country\": \"USA\"}|[{\"id\": \"S004.1\", \"name\": \"Blah\"}]|
|S005|Example with no books||{\"name\": \"Mr Unproductive\", \"genres\": [\"romance\", \"scifi\", \"fantasy\"], \"from_country\": \"USA\"}||


See

<iframe src="https://docs.google.com/presentation/d/e/2PACX-1vRyM06peU9BkrZbXJazuMlajw5s4Vbj5f0t0TE4hj_X9Ex_EASLSUZuaWUxYIhWbOC6CtPRtxrTGWQD/embed?start=false&loop=false&delayms=60000" frameborder="0" width="960" height="569" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true"></iframe>

The primary use case is to go from a rich *normalized* data model (as python objects, JSON, or YAML) to a flatter representation that is amenable to processing with:

 * Solr/Lucene
 * Pandas/R Dataframes
 * Excel/Google sheets
 * Unix cut/grep/cat/etc
 * Simple denormalized SQL database representations

The target denormalized format is a list of rows / a data matrix, where each cell is either an atom or a list of atoms.

## Method

 * Each top level key becomes a column
 * if the key value is a dict/object, then flatten
     * by default a '_' is used to separate the parent key from the inner key
     * e.g. the composition of `creator` and `from_country` becomes `creator_from_country`
     * currently one level of flattening is supported
 * if the key value is a list of atomic entities, then leave as is
 * if the key value is a list of dicts/objects, then flatten each key of this inner dict into a list
     * e.g. if `books` is a list of book objects, and `name` is a key on book, then `books_name` is a list of names of each book
     * order is significant - the first element of `books_name` is matched to the first element of `books_price`, etc
 * Allow any key to be serialized as yaml/json/pickle if configured

## Command line usage (TODO)

## Usage from Python

Documentation coming soon: see test folder for now


## use within LinkML



## Comparison

### Pandas json_normalize


 - https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.io.json.json_normalize.html

### Java json-flattener

 https://github.com/wnameless/json-flattener

### Python

### csvjson

https://csvjson.com/json2csv





%package -n python3-json-flattener
Summary:	Python library for denormalizing nested dicts or json objects to tables and back
Provides:	python-json-flattener
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-json-flattener
# json-flattener

Python library for denormalizing/flattening lists of complex objects to tables/data frames, with roundtripping

## Notebook Example

[EXAMPLE.ipynb](https://github.com/cmungall/json-flattener/blob/main/EXAMPLE.ipynb)

## Description

Given YAML/JSON/JSON-Lines such as:

```yaml
- id: S001
  name: Lord of the Rings
  genres:
    - fantasy
  creator:
    name: JRR Tolkein
    from_country: England
  books:
    - id: S001.1
      name: Fellowship of the Ring
      price: 5.99
      summary: Hobbits
    - id: S001.2
      name: The Two Towers
      price: 5.99
      summary: More hobbits
    - id: S001.3
      name: Return of the King
      price: 6.99
      summary: Yet more hobbits
- id: S002
  name: The Culture Series
  genres:
    - scifi
  creator:
    name: Ian M Banks
    from_country: Scotland
  books:
    - id: S002.1
      name: Consider Phlebas
      price: 5.99
    - id: S002.2
      name: Player of Games
      price: 5.99
```

Denormalize using `jfl` command:

```bash
jfl flatten -C creator=flat -C books=multivalued -i examples/books1.yaml -o examples/books1-flattened.tsv
```



|id|name|genres|creator_name|creator_from_country|books_name|books_summary|books_price|books_id|creator_genres
|---|---|---|---|---|---|---|---|---|---|
|S001|Lord of the Rings|[fantasy]|JRR Tolkein|England|[Fellowship of the Ring\|The Two Towers\|Return of the King]|[Hobbits\|More hobbits\|Yet more hobbits]|[5.99\|5.99\|6.99]|[S001.1\|S001.2\|S001.3]|
|S002|The Culture Series|[scifi]|Ian M Banks|Scotland|[Consider Phlebas\|Player of Games]||[5.99\|5.99]|[S002.1\|S002.2]|


Convert back to JSON/YAML:

```bash
jfl unflatten -C creator=flat -C books=multivalued -i examples/books1.tsv -o examples/books1.yaml
```



This library also allows complex fields to be directly serialized as json or yaml (the default is to append `_json` to the key). For example:

```bash
jfl flatten -C creator=json -C books=json -i examples/books1.yaml -o examples/books1-jsonified.tsv
```

|id|name|genres|creator_json|books_json|
|---|---|---|---|---|
|S001|Lord of the Rings|[fantasy]|{\"name\": \"JRR Tolkein\", \"from_country\": \"England\"}|[{\"id\": \"S001.1\", \"name\": \"Fellowship of the Ring\", \"summary\": \"Hobbits\", \"price\": 5.99}, {\"id\": \"S001.2\", \"name\": \"The Two Towers\", \"summary\": \"More hobbits\", \"price\": 5.99}, {\"id\": \"S001.3\", \"name\": \"Return of the King\", \"summary\": \"Yet more hobbits\", \"price\": 6.99}]|
|S002|The Culture Series|[scifi]|{\"name\": \"Ian M Banks\", \"from_country\": \"Scotland\"}|[{\"id\": \"S002.1\", \"name\": \"Consider Phlebas\", \"price\": 5.99}, {\"id\": \"S002.2\", \"name\": \"Player of Games\", \"price\": 5.99}]|
|S003|Book of the New Sun|[scifi, fantasy]|{\"name\": \"Gene Wolfe\", \"genres\": [\"scifi\", \"fantasy\"], \"from_country\": \"USA\"}|[{\"id\": \"S003.1\", \"name\": \"Shadow of the Torturer\"}, {\"id\": \"S003.2\", \"name\": \"Claw of the Conciliator\", \"price\": 6.99}]|
|S004|Example with single book||{\"name\": \"Ms Writer\", \"genres\": [\"romance\"], \"from_country\": \"USA\"}|[{\"id\": \"S004.1\", \"name\": \"Blah\"}]|
|S005|Example with no books||{\"name\": \"Mr Unproductive\", \"genres\": [\"romance\", \"scifi\", \"fantasy\"], \"from_country\": \"USA\"}||


See

<iframe src="https://docs.google.com/presentation/d/e/2PACX-1vRyM06peU9BkrZbXJazuMlajw5s4Vbj5f0t0TE4hj_X9Ex_EASLSUZuaWUxYIhWbOC6CtPRtxrTGWQD/embed?start=false&loop=false&delayms=60000" frameborder="0" width="960" height="569" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true"></iframe>

The primary use case is to go from a rich *normalized* data model (as python objects, JSON, or YAML) to a flatter representation that is amenable to processing with:

 * Solr/Lucene
 * Pandas/R Dataframes
 * Excel/Google sheets
 * Unix cut/grep/cat/etc
 * Simple denormalized SQL database representations

The target denormalized format is a list of rows / a data matrix, where each cell is either an atom or a list of atoms.

## Method

 * Each top level key becomes a column
 * if the key value is a dict/object, then flatten
     * by default a '_' is used to separate the parent key from the inner key
     * e.g. the composition of `creator` and `from_country` becomes `creator_from_country`
     * currently one level of flattening is supported
 * if the key value is a list of atomic entities, then leave as is
 * if the key value is a list of dicts/objects, then flatten each key of this inner dict into a list
     * e.g. if `books` is a list of book objects, and `name` is a key on book, then `books_name` is a list of names of each book
     * order is significant - the first element of `books_name` is matched to the first element of `books_price`, etc
 * Allow any key to be serialized as yaml/json/pickle if configured

## Command line usage (TODO)

## Usage from Python

Documentation coming soon: see test folder for now


## use within LinkML



## Comparison

### Pandas json_normalize


 - https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.io.json.json_normalize.html

### Java json-flattener

 https://github.com/wnameless/json-flattener

### Python

### csvjson

https://csvjson.com/json2csv





%package help
Summary:	Development documents and examples for json-flattener
Provides:	python3-json-flattener-doc
%description help
# json-flattener

Python library for denormalizing/flattening lists of complex objects to tables/data frames, with roundtripping

## Notebook Example

[EXAMPLE.ipynb](https://github.com/cmungall/json-flattener/blob/main/EXAMPLE.ipynb)

## Description

Given YAML/JSON/JSON-Lines such as:

```yaml
- id: S001
  name: Lord of the Rings
  genres:
    - fantasy
  creator:
    name: JRR Tolkein
    from_country: England
  books:
    - id: S001.1
      name: Fellowship of the Ring
      price: 5.99
      summary: Hobbits
    - id: S001.2
      name: The Two Towers
      price: 5.99
      summary: More hobbits
    - id: S001.3
      name: Return of the King
      price: 6.99
      summary: Yet more hobbits
- id: S002
  name: The Culture Series
  genres:
    - scifi
  creator:
    name: Ian M Banks
    from_country: Scotland
  books:
    - id: S002.1
      name: Consider Phlebas
      price: 5.99
    - id: S002.2
      name: Player of Games
      price: 5.99
```

Denormalize using `jfl` command:

```bash
jfl flatten -C creator=flat -C books=multivalued -i examples/books1.yaml -o examples/books1-flattened.tsv
```



|id|name|genres|creator_name|creator_from_country|books_name|books_summary|books_price|books_id|creator_genres
|---|---|---|---|---|---|---|---|---|---|
|S001|Lord of the Rings|[fantasy]|JRR Tolkein|England|[Fellowship of the Ring\|The Two Towers\|Return of the King]|[Hobbits\|More hobbits\|Yet more hobbits]|[5.99\|5.99\|6.99]|[S001.1\|S001.2\|S001.3]|
|S002|The Culture Series|[scifi]|Ian M Banks|Scotland|[Consider Phlebas\|Player of Games]||[5.99\|5.99]|[S002.1\|S002.2]|


Convert back to JSON/YAML:

```bash
jfl unflatten -C creator=flat -C books=multivalued -i examples/books1.tsv -o examples/books1.yaml
```



This library also allows complex fields to be directly serialized as json or yaml (the default is to append `_json` to the key). For example:

```bash
jfl flatten -C creator=json -C books=json -i examples/books1.yaml -o examples/books1-jsonified.tsv
```

|id|name|genres|creator_json|books_json|
|---|---|---|---|---|
|S001|Lord of the Rings|[fantasy]|{\"name\": \"JRR Tolkein\", \"from_country\": \"England\"}|[{\"id\": \"S001.1\", \"name\": \"Fellowship of the Ring\", \"summary\": \"Hobbits\", \"price\": 5.99}, {\"id\": \"S001.2\", \"name\": \"The Two Towers\", \"summary\": \"More hobbits\", \"price\": 5.99}, {\"id\": \"S001.3\", \"name\": \"Return of the King\", \"summary\": \"Yet more hobbits\", \"price\": 6.99}]|
|S002|The Culture Series|[scifi]|{\"name\": \"Ian M Banks\", \"from_country\": \"Scotland\"}|[{\"id\": \"S002.1\", \"name\": \"Consider Phlebas\", \"price\": 5.99}, {\"id\": \"S002.2\", \"name\": \"Player of Games\", \"price\": 5.99}]|
|S003|Book of the New Sun|[scifi, fantasy]|{\"name\": \"Gene Wolfe\", \"genres\": [\"scifi\", \"fantasy\"], \"from_country\": \"USA\"}|[{\"id\": \"S003.1\", \"name\": \"Shadow of the Torturer\"}, {\"id\": \"S003.2\", \"name\": \"Claw of the Conciliator\", \"price\": 6.99}]|
|S004|Example with single book||{\"name\": \"Ms Writer\", \"genres\": [\"romance\"], \"from_country\": \"USA\"}|[{\"id\": \"S004.1\", \"name\": \"Blah\"}]|
|S005|Example with no books||{\"name\": \"Mr Unproductive\", \"genres\": [\"romance\", \"scifi\", \"fantasy\"], \"from_country\": \"USA\"}||


See

<iframe src="https://docs.google.com/presentation/d/e/2PACX-1vRyM06peU9BkrZbXJazuMlajw5s4Vbj5f0t0TE4hj_X9Ex_EASLSUZuaWUxYIhWbOC6CtPRtxrTGWQD/embed?start=false&loop=false&delayms=60000" frameborder="0" width="960" height="569" allowfullscreen="true" mozallowfullscreen="true" webkitallowfullscreen="true"></iframe>

The primary use case is to go from a rich *normalized* data model (as python objects, JSON, or YAML) to a flatter representation that is amenable to processing with:

 * Solr/Lucene
 * Pandas/R Dataframes
 * Excel/Google sheets
 * Unix cut/grep/cat/etc
 * Simple denormalized SQL database representations

The target denormalized format is a list of rows / a data matrix, where each cell is either an atom or a list of atoms.

## Method

 * Each top level key becomes a column
 * if the key value is a dict/object, then flatten
     * by default a '_' is used to separate the parent key from the inner key
     * e.g. the composition of `creator` and `from_country` becomes `creator_from_country`
     * currently one level of flattening is supported
 * if the key value is a list of atomic entities, then leave as is
 * if the key value is a list of dicts/objects, then flatten each key of this inner dict into a list
     * e.g. if `books` is a list of book objects, and `name` is a key on book, then `books_name` is a list of names of each book
     * order is significant - the first element of `books_name` is matched to the first element of `books_price`, etc
 * Allow any key to be serialized as yaml/json/pickle if configured

## Command line usage (TODO)

## Usage from Python

Documentation coming soon: see test folder for now


## use within LinkML



## Comparison

### Pandas json_normalize


 - https://pandas.pydata.org/pandas-docs/version/0.25.0/reference/api/pandas.io.json.json_normalize.html

### Java json-flattener

 https://github.com/wnameless/json-flattener

### Python

### csvjson

https://csvjson.com/json2csv





%prep
%autosetup -n json-flattener-0.1.9

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-json-flattener -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 17 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.9-1
- Package Spec generated