1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
%global _empty_manifest_terminate_build 0
Name: python-jupyter-cache
Version: 0.5.0
Release: 1
Summary: A defined interface for working with a cache of jupyter notebooks.
License: MIT
URL: https://github.com/executablebooks/jupyter-cache
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b3/07/feded9f29b7ae087e5b49b6f93f74c59f444300c2b226801e8417ae83a17/jupyter-cache-0.5.0.tar.gz
BuildArch: noarch
Requires: python3-attrs
Requires: python3-click
Requires: python3-importlib-metadata
Requires: python3-nbclient
Requires: python3-nbformat
Requires: python3-pyyaml
Requires: python3-sqlalchemy
Requires: python3-tabulate
Requires: python3-click-log
Requires: python3-pre-commit
Requires: python3-nbdime
Requires: python3-jupytext
Requires: python3-myst-nb
Requires: python3-sphinx-book-theme
Requires: python3-sphinx-copybutton
Requires: python3-nbdime
Requires: python3-coverage
Requires: python3-ipykernel
Requires: python3-jupytext
Requires: python3-matplotlib
Requires: python3-nbformat
Requires: python3-numpy
Requires: python3-pandas
Requires: python3-pytest
Requires: python3-pytest-cov
Requires: python3-pytest-regressions
Requires: python3-sympy
%description
# jupyter-cache
[![Github-CI][github-ci]][github-link]
[![Coverage Status][codecov-badge]][codecov-link]
[![Documentation Status][rtd-badge]][rtd-link]
[![Code style: black][black-badge]][black-link]
[![PyPI][pypi-badge]][pypi-link]
A defined interface for working with a cache of jupyter notebooks.
## Why use jupyter-cache?
If you have a number of notebooks whose execution outputs you want to ensure are kept up to date, without having to re-execute them every time (particularly for long running code, or text-based formats that do not store the outputs).
The notebooks must have deterministic execution outputs:
- You use the same environment to run them (e.g. the same installed packages)
- They run no non-deterministic code (e.g. random numbers)
- They do not depend on external resources (e.g. files or network connections) that change over time
For example, it is utilised by [jupyter-book](https://jupyterbook.org/content/execute.html#caching-the-notebook-execution), to allow for fast document re-builds.
## Install
```bash
pip install jupyter-cache
```
For development:
```bash
git clone https://github.com/executablebooks/jupyter-cache
cd jupyter-cache
git checkout develop
pip install -e .[cli,code_style,testing]
```
See the documentation for usage.
## Development
Some desired requirements (not yet all implemented):
- Persistent
- Separates out "edits to content" from "edits to code cells". Cell
rearranges and code cell changes should require a re-execution. Content changes should not.
- Allow parallel access to notebooks (for execution)
- Store execution statistics/reports
- Store external assets: Notebooks being executed often require external assets: importing scripts/data/etc. These are prepared by the users.
- Store execution artefacts: created during execution
- A transparent and robust cache invalidation: imagine the user updating an external dependency or a Python module, or checking out a different git branch.
## Contributing
jupyter-cache follows the [Executable Book Contribution Guide](https://executablebooks.org/en/latest/contributing.html). We'd love your help!
### Code Style
Code style is tested using [flake8](http://flake8.pycqa.org),
with the configuration set in `.flake8`,
and code formatted with [black](https://github.com/ambv/black).
Installing with `jupyter-cache[code_style]` makes the [pre-commit](https://pre-commit.com/)
package available, which will ensure this style is met before commits are submitted, by reformatting the code
and testing for lint errors.
It can be setup by:
```shell
>> cd jupyter-cache
>> pre-commit install
```
Optionally you can run `black` and `flake8` separately:
```shell
>> black .
>> flake8 .
```
Editors like VS Code also have automatic code reformat utilities, which can adhere to this standard.
[github-ci]: https://github.com/executablebooks/jupyter-cache/workflows/continuous-integration/badge.svg?branch=master
[github-link]: https://github.com/executablebooks/jupyter-cache
[codecov-badge]: https://codecov.io/gh/executablebooks/jupyter-cache/branch/master/graph/badge.svg
[codecov-link]: https://codecov.io/gh/executablebooks/jupyter-cache
[rtd-badge]: https://readthedocs.org/projects/jupyter-cache/badge/?version=latest
[rtd-link]: https://jupyter-cache.readthedocs.io/en/latest/?badge=latest
[black-badge]: https://img.shields.io/badge/code%20style-black-000000.svg
[pypi-badge]: https://img.shields.io/pypi/v/jupyter-cache.svg
[pypi-link]: https://pypi.org/project/jupyter-cache
[black-link]: https://github.com/ambv/black
%package -n python3-jupyter-cache
Summary: A defined interface for working with a cache of jupyter notebooks.
Provides: python-jupyter-cache
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-jupyter-cache
# jupyter-cache
[![Github-CI][github-ci]][github-link]
[![Coverage Status][codecov-badge]][codecov-link]
[![Documentation Status][rtd-badge]][rtd-link]
[![Code style: black][black-badge]][black-link]
[![PyPI][pypi-badge]][pypi-link]
A defined interface for working with a cache of jupyter notebooks.
## Why use jupyter-cache?
If you have a number of notebooks whose execution outputs you want to ensure are kept up to date, without having to re-execute them every time (particularly for long running code, or text-based formats that do not store the outputs).
The notebooks must have deterministic execution outputs:
- You use the same environment to run them (e.g. the same installed packages)
- They run no non-deterministic code (e.g. random numbers)
- They do not depend on external resources (e.g. files or network connections) that change over time
For example, it is utilised by [jupyter-book](https://jupyterbook.org/content/execute.html#caching-the-notebook-execution), to allow for fast document re-builds.
## Install
```bash
pip install jupyter-cache
```
For development:
```bash
git clone https://github.com/executablebooks/jupyter-cache
cd jupyter-cache
git checkout develop
pip install -e .[cli,code_style,testing]
```
See the documentation for usage.
## Development
Some desired requirements (not yet all implemented):
- Persistent
- Separates out "edits to content" from "edits to code cells". Cell
rearranges and code cell changes should require a re-execution. Content changes should not.
- Allow parallel access to notebooks (for execution)
- Store execution statistics/reports
- Store external assets: Notebooks being executed often require external assets: importing scripts/data/etc. These are prepared by the users.
- Store execution artefacts: created during execution
- A transparent and robust cache invalidation: imagine the user updating an external dependency or a Python module, or checking out a different git branch.
## Contributing
jupyter-cache follows the [Executable Book Contribution Guide](https://executablebooks.org/en/latest/contributing.html). We'd love your help!
### Code Style
Code style is tested using [flake8](http://flake8.pycqa.org),
with the configuration set in `.flake8`,
and code formatted with [black](https://github.com/ambv/black).
Installing with `jupyter-cache[code_style]` makes the [pre-commit](https://pre-commit.com/)
package available, which will ensure this style is met before commits are submitted, by reformatting the code
and testing for lint errors.
It can be setup by:
```shell
>> cd jupyter-cache
>> pre-commit install
```
Optionally you can run `black` and `flake8` separately:
```shell
>> black .
>> flake8 .
```
Editors like VS Code also have automatic code reformat utilities, which can adhere to this standard.
[github-ci]: https://github.com/executablebooks/jupyter-cache/workflows/continuous-integration/badge.svg?branch=master
[github-link]: https://github.com/executablebooks/jupyter-cache
[codecov-badge]: https://codecov.io/gh/executablebooks/jupyter-cache/branch/master/graph/badge.svg
[codecov-link]: https://codecov.io/gh/executablebooks/jupyter-cache
[rtd-badge]: https://readthedocs.org/projects/jupyter-cache/badge/?version=latest
[rtd-link]: https://jupyter-cache.readthedocs.io/en/latest/?badge=latest
[black-badge]: https://img.shields.io/badge/code%20style-black-000000.svg
[pypi-badge]: https://img.shields.io/pypi/v/jupyter-cache.svg
[pypi-link]: https://pypi.org/project/jupyter-cache
[black-link]: https://github.com/ambv/black
%package help
Summary: Development documents and examples for jupyter-cache
Provides: python3-jupyter-cache-doc
%description help
# jupyter-cache
[![Github-CI][github-ci]][github-link]
[![Coverage Status][codecov-badge]][codecov-link]
[![Documentation Status][rtd-badge]][rtd-link]
[![Code style: black][black-badge]][black-link]
[![PyPI][pypi-badge]][pypi-link]
A defined interface for working with a cache of jupyter notebooks.
## Why use jupyter-cache?
If you have a number of notebooks whose execution outputs you want to ensure are kept up to date, without having to re-execute them every time (particularly for long running code, or text-based formats that do not store the outputs).
The notebooks must have deterministic execution outputs:
- You use the same environment to run them (e.g. the same installed packages)
- They run no non-deterministic code (e.g. random numbers)
- They do not depend on external resources (e.g. files or network connections) that change over time
For example, it is utilised by [jupyter-book](https://jupyterbook.org/content/execute.html#caching-the-notebook-execution), to allow for fast document re-builds.
## Install
```bash
pip install jupyter-cache
```
For development:
```bash
git clone https://github.com/executablebooks/jupyter-cache
cd jupyter-cache
git checkout develop
pip install -e .[cli,code_style,testing]
```
See the documentation for usage.
## Development
Some desired requirements (not yet all implemented):
- Persistent
- Separates out "edits to content" from "edits to code cells". Cell
rearranges and code cell changes should require a re-execution. Content changes should not.
- Allow parallel access to notebooks (for execution)
- Store execution statistics/reports
- Store external assets: Notebooks being executed often require external assets: importing scripts/data/etc. These are prepared by the users.
- Store execution artefacts: created during execution
- A transparent and robust cache invalidation: imagine the user updating an external dependency or a Python module, or checking out a different git branch.
## Contributing
jupyter-cache follows the [Executable Book Contribution Guide](https://executablebooks.org/en/latest/contributing.html). We'd love your help!
### Code Style
Code style is tested using [flake8](http://flake8.pycqa.org),
with the configuration set in `.flake8`,
and code formatted with [black](https://github.com/ambv/black).
Installing with `jupyter-cache[code_style]` makes the [pre-commit](https://pre-commit.com/)
package available, which will ensure this style is met before commits are submitted, by reformatting the code
and testing for lint errors.
It can be setup by:
```shell
>> cd jupyter-cache
>> pre-commit install
```
Optionally you can run `black` and `flake8` separately:
```shell
>> black .
>> flake8 .
```
Editors like VS Code also have automatic code reformat utilities, which can adhere to this standard.
[github-ci]: https://github.com/executablebooks/jupyter-cache/workflows/continuous-integration/badge.svg?branch=master
[github-link]: https://github.com/executablebooks/jupyter-cache
[codecov-badge]: https://codecov.io/gh/executablebooks/jupyter-cache/branch/master/graph/badge.svg
[codecov-link]: https://codecov.io/gh/executablebooks/jupyter-cache
[rtd-badge]: https://readthedocs.org/projects/jupyter-cache/badge/?version=latest
[rtd-link]: https://jupyter-cache.readthedocs.io/en/latest/?badge=latest
[black-badge]: https://img.shields.io/badge/code%20style-black-000000.svg
[pypi-badge]: https://img.shields.io/pypi/v/jupyter-cache.svg
[pypi-link]: https://pypi.org/project/jupyter-cache
[black-link]: https://github.com/ambv/black
%prep
%autosetup -n jupyter-cache-0.5.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-jupyter-cache -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.0-1
- Package Spec generated
|