summaryrefslogtreecommitdiff
path: root/python-k1lib.spec
blob: 19c26e65058b990af0cee6ece46a388a03c95692 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
%global _empty_manifest_terminate_build 0
Name:		python-k1lib
Version:	1.4
Release:	1
Summary:	Some nice ML overhaul
License:	MIT
URL:		https://k1lib.com
Source0:	https://mirrors.aliyun.com/pypi/web/packages/0b/5f/ab2685cce2319e4e7ded3533c7888d1018341d6bee67c8636fb649fbb534/k1lib-1.4.linux-x86_64.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-matplotlib
Requires:	python3-dill
Requires:	python3-forbiddenfruit
Requires:	python3-wurlitzer
Requires:	python3-validators
Requires:	python3-graphviz
Requires:	python3-torchvision
Requires:	python3-pillow
Requires:	python3-scikit-image
Requires:	python3-pyperclip
Requires:	python3-k1a
Requires:	python3-torch

%description
# k1lib

This library enables piping in Python, and has a lot of prebuilt piping tools
to support this workflow.

## Installation

```bash
  pip install k1lib[all]
```

This will install lots of heavy dependencies like PyTorch. If you want to install
the leanest version of the library, do this instead:

```bash
  pip install k1lib
```

To use it in a notebook, do this:

```python
  from k1lib.imports import *
```

Check out the source code for "k1lib.imports" if you're curious what it's
importing. If you hate \* imports for whatever reason, you can import cli
tools individually, like this::

```python
  from k1lib.cli import ls, cat, grep, apply, batched, display
```

## Examples

```python
# returns [0, 1, 4, 9, 16], kinda like map
range(5) | apply(lambda x: x**2) | deref()

# plotting the function y = x^2
x = np.linspace(-2, 2); y = x**2
plt.plot(x, y)         # normal way
[x, y] | ~aS(plt.plot) # pipe way

# plotting the functions y = x**2, y = x**3, y = x**4
x = np.linspace(-2, 2)
[2, 3, 4] | apply(lambda exp: [x, x**exp]) | ~apply(plt.plot) | deref()

# loading csv file and displaying first 10 rows in a nice table
cat("abc.csv") | apply(lambda x: x.split(",")) | display()

# searching for "gene_name: ..." lines in a file and display a nice overview of just the gene names alone
cat("abc.txt") | grep("gene_name: ") | apply(lambda x: x.split(": ")[1]) | batched(4) | display()

# manipulate numpy arrays and pytorch tensors
a = np.random.randn(3, 4, 5)
a | transpose()     | shape() # returns (4, 3, 5)
a | transpose(0, 2) | shape() # returns (5, 4, 3)

# loading images from categories and splitting them into train and valid sets. Image url: dataset/categoryA/image1.jpg
train, valid = ls("dataset") | apply(ls() | splitW()) | transpose() | deref()
# shape of output is (train/valid, category, image url). It was (category, train/valid, image url) before going through transpose()

# executing task in multiple processes
range(10_000_000) | batched(1_000_000) | applyMp(toSum()) | toSum()
# this splits numbers from 0 to 10M into 10 batches, and then sum each batch in parallel, and then sum the results of each batch

# executing task in multiple processes on multiple computers
range(10_000_000) | batched(1_000_000) | applyCl(toSum()) | toSum()
```

You can combine these "cli tools" together in really complex ways to do really complex
manipulation really fast and with little code. Hell, you can even create a full blown
PyTorch dataloader from scratch where you're in control of every detail, operating in 7
dimensions, in multiple processes on multiple nodes, in just 6 lines of code. Check over
the basics of it here: [k1lib.cli](https://k1lib.com/latest/cli/index.html).

After doing that, you can check out the tutorials to get a large overview of how everything
integrates together nicely.

## Some details

- Repo: https://github.com/157239n/k1lib/
- Docs: https://k1lib.com

## Contacts?

If you found bugs, open a new issue on the repo itself. If you want to have a chat, then email me at 157239q@gmail.com

If you want to get an overview of how the repo is structured, read [contributing.md](contributing.md)


%package -n python3-k1lib
Summary:	Some nice ML overhaul
Provides:	python-k1lib
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-k1lib
# k1lib

This library enables piping in Python, and has a lot of prebuilt piping tools
to support this workflow.

## Installation

```bash
  pip install k1lib[all]
```

This will install lots of heavy dependencies like PyTorch. If you want to install
the leanest version of the library, do this instead:

```bash
  pip install k1lib
```

To use it in a notebook, do this:

```python
  from k1lib.imports import *
```

Check out the source code for "k1lib.imports" if you're curious what it's
importing. If you hate \* imports for whatever reason, you can import cli
tools individually, like this::

```python
  from k1lib.cli import ls, cat, grep, apply, batched, display
```

## Examples

```python
# returns [0, 1, 4, 9, 16], kinda like map
range(5) | apply(lambda x: x**2) | deref()

# plotting the function y = x^2
x = np.linspace(-2, 2); y = x**2
plt.plot(x, y)         # normal way
[x, y] | ~aS(plt.plot) # pipe way

# plotting the functions y = x**2, y = x**3, y = x**4
x = np.linspace(-2, 2)
[2, 3, 4] | apply(lambda exp: [x, x**exp]) | ~apply(plt.plot) | deref()

# loading csv file and displaying first 10 rows in a nice table
cat("abc.csv") | apply(lambda x: x.split(",")) | display()

# searching for "gene_name: ..." lines in a file and display a nice overview of just the gene names alone
cat("abc.txt") | grep("gene_name: ") | apply(lambda x: x.split(": ")[1]) | batched(4) | display()

# manipulate numpy arrays and pytorch tensors
a = np.random.randn(3, 4, 5)
a | transpose()     | shape() # returns (4, 3, 5)
a | transpose(0, 2) | shape() # returns (5, 4, 3)

# loading images from categories and splitting them into train and valid sets. Image url: dataset/categoryA/image1.jpg
train, valid = ls("dataset") | apply(ls() | splitW()) | transpose() | deref()
# shape of output is (train/valid, category, image url). It was (category, train/valid, image url) before going through transpose()

# executing task in multiple processes
range(10_000_000) | batched(1_000_000) | applyMp(toSum()) | toSum()
# this splits numbers from 0 to 10M into 10 batches, and then sum each batch in parallel, and then sum the results of each batch

# executing task in multiple processes on multiple computers
range(10_000_000) | batched(1_000_000) | applyCl(toSum()) | toSum()
```

You can combine these "cli tools" together in really complex ways to do really complex
manipulation really fast and with little code. Hell, you can even create a full blown
PyTorch dataloader from scratch where you're in control of every detail, operating in 7
dimensions, in multiple processes on multiple nodes, in just 6 lines of code. Check over
the basics of it here: [k1lib.cli](https://k1lib.com/latest/cli/index.html).

After doing that, you can check out the tutorials to get a large overview of how everything
integrates together nicely.

## Some details

- Repo: https://github.com/157239n/k1lib/
- Docs: https://k1lib.com

## Contacts?

If you found bugs, open a new issue on the repo itself. If you want to have a chat, then email me at 157239q@gmail.com

If you want to get an overview of how the repo is structured, read [contributing.md](contributing.md)


%package help
Summary:	Development documents and examples for k1lib
Provides:	python3-k1lib-doc
%description help
# k1lib

This library enables piping in Python, and has a lot of prebuilt piping tools
to support this workflow.

## Installation

```bash
  pip install k1lib[all]
```

This will install lots of heavy dependencies like PyTorch. If you want to install
the leanest version of the library, do this instead:

```bash
  pip install k1lib
```

To use it in a notebook, do this:

```python
  from k1lib.imports import *
```

Check out the source code for "k1lib.imports" if you're curious what it's
importing. If you hate \* imports for whatever reason, you can import cli
tools individually, like this::

```python
  from k1lib.cli import ls, cat, grep, apply, batched, display
```

## Examples

```python
# returns [0, 1, 4, 9, 16], kinda like map
range(5) | apply(lambda x: x**2) | deref()

# plotting the function y = x^2
x = np.linspace(-2, 2); y = x**2
plt.plot(x, y)         # normal way
[x, y] | ~aS(plt.plot) # pipe way

# plotting the functions y = x**2, y = x**3, y = x**4
x = np.linspace(-2, 2)
[2, 3, 4] | apply(lambda exp: [x, x**exp]) | ~apply(plt.plot) | deref()

# loading csv file and displaying first 10 rows in a nice table
cat("abc.csv") | apply(lambda x: x.split(",")) | display()

# searching for "gene_name: ..." lines in a file and display a nice overview of just the gene names alone
cat("abc.txt") | grep("gene_name: ") | apply(lambda x: x.split(": ")[1]) | batched(4) | display()

# manipulate numpy arrays and pytorch tensors
a = np.random.randn(3, 4, 5)
a | transpose()     | shape() # returns (4, 3, 5)
a | transpose(0, 2) | shape() # returns (5, 4, 3)

# loading images from categories and splitting them into train and valid sets. Image url: dataset/categoryA/image1.jpg
train, valid = ls("dataset") | apply(ls() | splitW()) | transpose() | deref()
# shape of output is (train/valid, category, image url). It was (category, train/valid, image url) before going through transpose()

# executing task in multiple processes
range(10_000_000) | batched(1_000_000) | applyMp(toSum()) | toSum()
# this splits numbers from 0 to 10M into 10 batches, and then sum each batch in parallel, and then sum the results of each batch

# executing task in multiple processes on multiple computers
range(10_000_000) | batched(1_000_000) | applyCl(toSum()) | toSum()
```

You can combine these "cli tools" together in really complex ways to do really complex
manipulation really fast and with little code. Hell, you can even create a full blown
PyTorch dataloader from scratch where you're in control of every detail, operating in 7
dimensions, in multiple processes on multiple nodes, in just 6 lines of code. Check over
the basics of it here: [k1lib.cli](https://k1lib.com/latest/cli/index.html).

After doing that, you can check out the tutorials to get a large overview of how everything
integrates together nicely.

## Some details

- Repo: https://github.com/157239n/k1lib/
- Docs: https://k1lib.com

## Contacts?

If you found bugs, open a new issue on the repo itself. If you want to have a chat, then email me at 157239q@gmail.com

If you want to get an overview of how the repo is structured, read [contributing.md](contributing.md)


%prep
%autosetup -n k1lib.linux-x86_64-1.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-k1lib -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Jun 09 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4-1
- Package Spec generated