1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
|
%global _empty_manifest_terminate_build 0
Name: python-kaggle-environments
Version: 1.13.0
Release: 1
Summary: Kaggle Environments
License: Apache 2.0
URL: https://github.com/Kaggle/kaggle-environments
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/00/ea/8f0b1a409da09ddf06848eb3b21df3bbd0873d2faf359850bea02f16762e/kaggle-environments-1.13.0.tar.gz
BuildArch: noarch
Requires: python3-Flask
Requires: python3-PettingZoo
Requires: python3-gym
Requires: python3-jsonschema
Requires: python3-numpy
Requires: python3-pickle5
Requires: python3-requests
Requires: python3-stable-baselines3
Requires: python3-vec-noise
%description
# [<img src="https://kaggle.com/static/images/site-logo.png" height="50" style="margin-bottom:-15px" />](https://kaggle.com) Environments
```bash
pip install kaggle-environments
```
# TLDR;
```python
from kaggle_environments import make
# Setup a tictactoe environment.
env = make("tictactoe")
# Basic agent which marks the first available cell.
def my_agent(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
# Run the basic agent against a default agent which chooses a "random" move.
env.run([my_agent, "random"])
# Render an html ipython replay of the tictactoe game.
env.render(mode="ipython")
```
# Overview
Kaggle Environments was created to evaluate episodes. While other libraries have set interface precedents (such as Open.ai Gym), the emphasis of this library focuses on:
1. Episode evaluation (compared to training agents).
2. Configurable environment/agent lifecycles.
3. Simplified agent and environment creation.
4. Cross language compatible/transpilable syntax/interfaces.
## Help Documentation
```python
# Additional documentation (especially interfaces) can be found on all public functions:
from kaggle_environments import make
help(make)
env = make("tictactoe")
dir(env)
help(env.reset)
```
# Agents
> A function which given an observation generates an action.
## Writing
Agent functions can have observation and configuration parameters and must return a valid action. Details about the observation, configuration, and actions can seen by viewing the specification.
```python
from kaggle_environments import make
env = make("connectx", {"rows": 10, "columns": 8, "inarow": 5})
def agent(observation, configuration):
print(observation) # {board: [...], mark: 1}
print(configuration) # {rows: 10, columns: 8, inarow: 5}
return 3 # Action: always place a mark in the 3rd column.
# Run an episode using the agent above vs the default random agent.
env.run([agent, "random"])
# Print schemas from the specification.
print(env.specification.observation)
print(env.specification.configuration)
print(env.specification.action)
```
## Loading Agents
Agents are always functions, however there are some shorthand syntax options to make generating/using them easier.
```python
# Agent def accepting an observation and returning an action.
def agent1(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
# Load a default agent called "random".
agent2 = "random"
# Load an agent from source.
agent3 = """
def act(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
"""
# Load an agent from a file.
agent4 = "C:\path\file.py"
# Return a fixed action.
agent5 = 3
# Return an action from a url.
agent6 = "http://localhost:8000/run/agent"
```
## Default Agents
Most environments contain default agents to play against. To see the list of available agents for a specific environment run:
```python
from kaggle_environments import make
env = make("tictactoe")
# The list of available default agents.
print(*env.agents)
# Run random agent vs reaction agent.
env.run(["random", "reaction"])
```
## Training
Open AI Gym interface is used to assist with training agents. The `None` keyword is used below to denote which agent to train (i.e. train as first or second player of connectx).
```python
from kaggle_environments import make
env = make("connectx", debug=True)
# Training agent in first position (player 1) against the default random agent.
trainer = env.train([None, "random"])
obs = trainer.reset()
for _ in range(100):
env.render()
action = 0 # Action for the agent being trained.
obs, reward, done, info = trainer.step(action)
if done:
obs = trainer.reset()
```
## Debugging
There are 3 types of errors which can occur from agent execution:
1. **Timeout** - the agent runtime exceeded the allowed limit. There are 2 timeouts:
1. `agentTimeout` - Used for initialization of an agent on first "act".
2. `actTimeout` - Used for obtaining an action.
2. **Error** - the agent raised and error during execution.
3. **Invalid** - the agent action response didn't match the action specification or the environment deemed it invalid (i.e. playing twice in the same cell in tictactoe).
To help debug your agent and why it threw the errors above, add the `debug` flag when setting up the environment.
```python
from kaggle_environments import make
def agent():
return "Something Bad"
env = make("tictactoe", debug=True)
env.run([agent, "random"])
# Prints: "Invalid Action: Something Bad"
```
# Environments
> A function which given a state and agent actions generates a new state.
| Name | Description | Make |
| --------- | ------------------------------------ | ------------------------- |
| connectx | Connect 4 in a row but configurable. | `env = make("connectx")` |
| tictactoe | Classic Tic Tac Toe | `env = make("tictactoe")` |
| identity | For debugging, action is the reward. | `env = make("identity")` |
## Making
An environment instance can be made from an existing specification (such as those listed above).
```python
from kaggle_environments import make
# Create an environment instance.
env = make(
# Specification or name to registered specification.
"connectx",
# Override default and environment configuration.
configuration={"rows": 9, "columns": 10},
# Initialize the environment from a prior state (episode resume).
steps=[],
# Enable verbose logging.
debug=True
)
```
## Configuration
There are two types of configuration: Defaults applying to every environment and those specific to the environment. The following is a list of the default configuration:
| Name | Description |
| ------------ | --------------------------------------------------------------- |
| episodeSteps | Maximum number of steps in the episode. |
| agentTimeout | Maximum runtime (seconds) to initialize an agent. |
| actTimeout | Maximum runtime (seconds) to obtain an action from an agent. |
| runTimeout | Maximum runtime (seconds) of an episode (not necessarily DONE). |
| maxLogLength | Maximum log length (number of characters, `None` -> no limit) |
```python
env = make("connectx", configuration={
"columns": 19, # Specific to ConnectX.
"actTimeout": 10,
})
```
## Resetting
Environments are reset by default after "make" (unless starting steps are passed in) as well as when calling "run". Reset can be called at anytime to clear the environment.
```python
num_agents = 2
reset_state = env.reset(num_agents)
```
## Running
Execute an episode against the environment using the passed in agents until they are no longer running (i.e. status != ACTIVE).
```python
steps = env.run([agent1, agent2])
print(steps)
```
## Evaluating
Evaluation is used to run an episode (environment + agents) multiple times and just return the rewards.
```python
from kaggle_environments import evaluate
# Same definitions as "make" above.
environment = "connectx"
configuration = {"rows": 10, "columns": 8, "inarow": 5}
steps = []
# Which agents to run repeatedly. Same as env.run(agents)
agents = ["random", agent1]
# How many times to run them.
num_episodes = 10
rewards = evaluate(environment, agents, configuration, steps, num_episodes)
```
## Stepping
Running above essentially just steps until no agent is still active. To execute a singular game loop, pass in actions directly for each agent. Note that this is normally used for training agents (most useful in a single agent setup such as using the gym interface).
```python
agent1_action = agent1(env.state[0].observation)
agent2_action = agent2(env.state[1].observation)
state = env.step([agent1_action, agent2_action])
```
## Playing
A few environments offer an interactive play against agents within jupyter notebooks. An example of this is using connectx:
```python
from kaggle_environments import make
env = make("connectx")
# None indicates which agent will be manually played.
env.play([None, "random"])
```
## Rendering
The following rendering modes are supported:
- json - Same as doing a json dump of `env.toJSON()`
- ansi - Ascii character representation of the environment.
- human - ansi just printed to stdout
- html - HTML player representation of the environment.
- ipython - html just printed to the output of a ipython notebook.
```python
out = env.render(mode="ansi")
print(out)
```
# Command Line
```sh
> python main.py -h
```
## List Registered Environments
```sh
> python main.py list
```
## Evaluate Episode Rewards
```sh
python main.py evaluate --environment tictactoe --agents random random --episodes 10
```
## Run an Episode
```sh
> python main.py run --environment tictactoe --agents random /pathtomy/agent.py --debug True
```
## Load an Episode
This is useful when converting an episode json output into html.
```sh
python main.py load --environment tictactoe --steps [...] --render '{"mode": "html"}'
```
# HTTP Server
The HTTP server contains the same interface/actions as the CLI above merging both POST body and GET params.
## Setup
```bash
python main.py http-server --port=8012 --host=0.0.0.0
```
### Running Agents on Separate Servers
```python
# How to run agent on a separate server.
import requests
import json
path_to_agent1 = "/home/ajeffries/git/playground/agent1.py"
path_to_agent2 = "/home/ajeffries/git/playground/agent2.py"
agent1_url = f"http://localhost:5001?agents[]={path_to_agent1}"
agent2_url = f"http://localhost:5002?agents[]={path_to_agent2}"
body = {
"action": "run",
"environment": "tictactoe",
"agents": [agent1_url, agent2_url]
}
resp = requests.post(url="http://localhost:5000", data=json.dumps(body)).json()
# Inflate the response replay to visualize.
from kaggle_environments import make
env = make("tictactoe", steps=resp["steps"], debug=True)
env.render(mode="ipython")
print(resp)
```
%package -n python3-kaggle-environments
Summary: Kaggle Environments
Provides: python-kaggle-environments
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-kaggle-environments
# [<img src="https://kaggle.com/static/images/site-logo.png" height="50" style="margin-bottom:-15px" />](https://kaggle.com) Environments
```bash
pip install kaggle-environments
```
# TLDR;
```python
from kaggle_environments import make
# Setup a tictactoe environment.
env = make("tictactoe")
# Basic agent which marks the first available cell.
def my_agent(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
# Run the basic agent against a default agent which chooses a "random" move.
env.run([my_agent, "random"])
# Render an html ipython replay of the tictactoe game.
env.render(mode="ipython")
```
# Overview
Kaggle Environments was created to evaluate episodes. While other libraries have set interface precedents (such as Open.ai Gym), the emphasis of this library focuses on:
1. Episode evaluation (compared to training agents).
2. Configurable environment/agent lifecycles.
3. Simplified agent and environment creation.
4. Cross language compatible/transpilable syntax/interfaces.
## Help Documentation
```python
# Additional documentation (especially interfaces) can be found on all public functions:
from kaggle_environments import make
help(make)
env = make("tictactoe")
dir(env)
help(env.reset)
```
# Agents
> A function which given an observation generates an action.
## Writing
Agent functions can have observation and configuration parameters and must return a valid action. Details about the observation, configuration, and actions can seen by viewing the specification.
```python
from kaggle_environments import make
env = make("connectx", {"rows": 10, "columns": 8, "inarow": 5})
def agent(observation, configuration):
print(observation) # {board: [...], mark: 1}
print(configuration) # {rows: 10, columns: 8, inarow: 5}
return 3 # Action: always place a mark in the 3rd column.
# Run an episode using the agent above vs the default random agent.
env.run([agent, "random"])
# Print schemas from the specification.
print(env.specification.observation)
print(env.specification.configuration)
print(env.specification.action)
```
## Loading Agents
Agents are always functions, however there are some shorthand syntax options to make generating/using them easier.
```python
# Agent def accepting an observation and returning an action.
def agent1(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
# Load a default agent called "random".
agent2 = "random"
# Load an agent from source.
agent3 = """
def act(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
"""
# Load an agent from a file.
agent4 = "C:\path\file.py"
# Return a fixed action.
agent5 = 3
# Return an action from a url.
agent6 = "http://localhost:8000/run/agent"
```
## Default Agents
Most environments contain default agents to play against. To see the list of available agents for a specific environment run:
```python
from kaggle_environments import make
env = make("tictactoe")
# The list of available default agents.
print(*env.agents)
# Run random agent vs reaction agent.
env.run(["random", "reaction"])
```
## Training
Open AI Gym interface is used to assist with training agents. The `None` keyword is used below to denote which agent to train (i.e. train as first or second player of connectx).
```python
from kaggle_environments import make
env = make("connectx", debug=True)
# Training agent in first position (player 1) against the default random agent.
trainer = env.train([None, "random"])
obs = trainer.reset()
for _ in range(100):
env.render()
action = 0 # Action for the agent being trained.
obs, reward, done, info = trainer.step(action)
if done:
obs = trainer.reset()
```
## Debugging
There are 3 types of errors which can occur from agent execution:
1. **Timeout** - the agent runtime exceeded the allowed limit. There are 2 timeouts:
1. `agentTimeout` - Used for initialization of an agent on first "act".
2. `actTimeout` - Used for obtaining an action.
2. **Error** - the agent raised and error during execution.
3. **Invalid** - the agent action response didn't match the action specification or the environment deemed it invalid (i.e. playing twice in the same cell in tictactoe).
To help debug your agent and why it threw the errors above, add the `debug` flag when setting up the environment.
```python
from kaggle_environments import make
def agent():
return "Something Bad"
env = make("tictactoe", debug=True)
env.run([agent, "random"])
# Prints: "Invalid Action: Something Bad"
```
# Environments
> A function which given a state and agent actions generates a new state.
| Name | Description | Make |
| --------- | ------------------------------------ | ------------------------- |
| connectx | Connect 4 in a row but configurable. | `env = make("connectx")` |
| tictactoe | Classic Tic Tac Toe | `env = make("tictactoe")` |
| identity | For debugging, action is the reward. | `env = make("identity")` |
## Making
An environment instance can be made from an existing specification (such as those listed above).
```python
from kaggle_environments import make
# Create an environment instance.
env = make(
# Specification or name to registered specification.
"connectx",
# Override default and environment configuration.
configuration={"rows": 9, "columns": 10},
# Initialize the environment from a prior state (episode resume).
steps=[],
# Enable verbose logging.
debug=True
)
```
## Configuration
There are two types of configuration: Defaults applying to every environment and those specific to the environment. The following is a list of the default configuration:
| Name | Description |
| ------------ | --------------------------------------------------------------- |
| episodeSteps | Maximum number of steps in the episode. |
| agentTimeout | Maximum runtime (seconds) to initialize an agent. |
| actTimeout | Maximum runtime (seconds) to obtain an action from an agent. |
| runTimeout | Maximum runtime (seconds) of an episode (not necessarily DONE). |
| maxLogLength | Maximum log length (number of characters, `None` -> no limit) |
```python
env = make("connectx", configuration={
"columns": 19, # Specific to ConnectX.
"actTimeout": 10,
})
```
## Resetting
Environments are reset by default after "make" (unless starting steps are passed in) as well as when calling "run". Reset can be called at anytime to clear the environment.
```python
num_agents = 2
reset_state = env.reset(num_agents)
```
## Running
Execute an episode against the environment using the passed in agents until they are no longer running (i.e. status != ACTIVE).
```python
steps = env.run([agent1, agent2])
print(steps)
```
## Evaluating
Evaluation is used to run an episode (environment + agents) multiple times and just return the rewards.
```python
from kaggle_environments import evaluate
# Same definitions as "make" above.
environment = "connectx"
configuration = {"rows": 10, "columns": 8, "inarow": 5}
steps = []
# Which agents to run repeatedly. Same as env.run(agents)
agents = ["random", agent1]
# How many times to run them.
num_episodes = 10
rewards = evaluate(environment, agents, configuration, steps, num_episodes)
```
## Stepping
Running above essentially just steps until no agent is still active. To execute a singular game loop, pass in actions directly for each agent. Note that this is normally used for training agents (most useful in a single agent setup such as using the gym interface).
```python
agent1_action = agent1(env.state[0].observation)
agent2_action = agent2(env.state[1].observation)
state = env.step([agent1_action, agent2_action])
```
## Playing
A few environments offer an interactive play against agents within jupyter notebooks. An example of this is using connectx:
```python
from kaggle_environments import make
env = make("connectx")
# None indicates which agent will be manually played.
env.play([None, "random"])
```
## Rendering
The following rendering modes are supported:
- json - Same as doing a json dump of `env.toJSON()`
- ansi - Ascii character representation of the environment.
- human - ansi just printed to stdout
- html - HTML player representation of the environment.
- ipython - html just printed to the output of a ipython notebook.
```python
out = env.render(mode="ansi")
print(out)
```
# Command Line
```sh
> python main.py -h
```
## List Registered Environments
```sh
> python main.py list
```
## Evaluate Episode Rewards
```sh
python main.py evaluate --environment tictactoe --agents random random --episodes 10
```
## Run an Episode
```sh
> python main.py run --environment tictactoe --agents random /pathtomy/agent.py --debug True
```
## Load an Episode
This is useful when converting an episode json output into html.
```sh
python main.py load --environment tictactoe --steps [...] --render '{"mode": "html"}'
```
# HTTP Server
The HTTP server contains the same interface/actions as the CLI above merging both POST body and GET params.
## Setup
```bash
python main.py http-server --port=8012 --host=0.0.0.0
```
### Running Agents on Separate Servers
```python
# How to run agent on a separate server.
import requests
import json
path_to_agent1 = "/home/ajeffries/git/playground/agent1.py"
path_to_agent2 = "/home/ajeffries/git/playground/agent2.py"
agent1_url = f"http://localhost:5001?agents[]={path_to_agent1}"
agent2_url = f"http://localhost:5002?agents[]={path_to_agent2}"
body = {
"action": "run",
"environment": "tictactoe",
"agents": [agent1_url, agent2_url]
}
resp = requests.post(url="http://localhost:5000", data=json.dumps(body)).json()
# Inflate the response replay to visualize.
from kaggle_environments import make
env = make("tictactoe", steps=resp["steps"], debug=True)
env.render(mode="ipython")
print(resp)
```
%package help
Summary: Development documents and examples for kaggle-environments
Provides: python3-kaggle-environments-doc
%description help
# [<img src="https://kaggle.com/static/images/site-logo.png" height="50" style="margin-bottom:-15px" />](https://kaggle.com) Environments
```bash
pip install kaggle-environments
```
# TLDR;
```python
from kaggle_environments import make
# Setup a tictactoe environment.
env = make("tictactoe")
# Basic agent which marks the first available cell.
def my_agent(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
# Run the basic agent against a default agent which chooses a "random" move.
env.run([my_agent, "random"])
# Render an html ipython replay of the tictactoe game.
env.render(mode="ipython")
```
# Overview
Kaggle Environments was created to evaluate episodes. While other libraries have set interface precedents (such as Open.ai Gym), the emphasis of this library focuses on:
1. Episode evaluation (compared to training agents).
2. Configurable environment/agent lifecycles.
3. Simplified agent and environment creation.
4. Cross language compatible/transpilable syntax/interfaces.
## Help Documentation
```python
# Additional documentation (especially interfaces) can be found on all public functions:
from kaggle_environments import make
help(make)
env = make("tictactoe")
dir(env)
help(env.reset)
```
# Agents
> A function which given an observation generates an action.
## Writing
Agent functions can have observation and configuration parameters and must return a valid action. Details about the observation, configuration, and actions can seen by viewing the specification.
```python
from kaggle_environments import make
env = make("connectx", {"rows": 10, "columns": 8, "inarow": 5})
def agent(observation, configuration):
print(observation) # {board: [...], mark: 1}
print(configuration) # {rows: 10, columns: 8, inarow: 5}
return 3 # Action: always place a mark in the 3rd column.
# Run an episode using the agent above vs the default random agent.
env.run([agent, "random"])
# Print schemas from the specification.
print(env.specification.observation)
print(env.specification.configuration)
print(env.specification.action)
```
## Loading Agents
Agents are always functions, however there are some shorthand syntax options to make generating/using them easier.
```python
# Agent def accepting an observation and returning an action.
def agent1(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
# Load a default agent called "random".
agent2 = "random"
# Load an agent from source.
agent3 = """
def act(obs):
return [c for c in range(len(obs.board)) if obs.board[c] == 0][0]
"""
# Load an agent from a file.
agent4 = "C:\path\file.py"
# Return a fixed action.
agent5 = 3
# Return an action from a url.
agent6 = "http://localhost:8000/run/agent"
```
## Default Agents
Most environments contain default agents to play against. To see the list of available agents for a specific environment run:
```python
from kaggle_environments import make
env = make("tictactoe")
# The list of available default agents.
print(*env.agents)
# Run random agent vs reaction agent.
env.run(["random", "reaction"])
```
## Training
Open AI Gym interface is used to assist with training agents. The `None` keyword is used below to denote which agent to train (i.e. train as first or second player of connectx).
```python
from kaggle_environments import make
env = make("connectx", debug=True)
# Training agent in first position (player 1) against the default random agent.
trainer = env.train([None, "random"])
obs = trainer.reset()
for _ in range(100):
env.render()
action = 0 # Action for the agent being trained.
obs, reward, done, info = trainer.step(action)
if done:
obs = trainer.reset()
```
## Debugging
There are 3 types of errors which can occur from agent execution:
1. **Timeout** - the agent runtime exceeded the allowed limit. There are 2 timeouts:
1. `agentTimeout` - Used for initialization of an agent on first "act".
2. `actTimeout` - Used for obtaining an action.
2. **Error** - the agent raised and error during execution.
3. **Invalid** - the agent action response didn't match the action specification or the environment deemed it invalid (i.e. playing twice in the same cell in tictactoe).
To help debug your agent and why it threw the errors above, add the `debug` flag when setting up the environment.
```python
from kaggle_environments import make
def agent():
return "Something Bad"
env = make("tictactoe", debug=True)
env.run([agent, "random"])
# Prints: "Invalid Action: Something Bad"
```
# Environments
> A function which given a state and agent actions generates a new state.
| Name | Description | Make |
| --------- | ------------------------------------ | ------------------------- |
| connectx | Connect 4 in a row but configurable. | `env = make("connectx")` |
| tictactoe | Classic Tic Tac Toe | `env = make("tictactoe")` |
| identity | For debugging, action is the reward. | `env = make("identity")` |
## Making
An environment instance can be made from an existing specification (such as those listed above).
```python
from kaggle_environments import make
# Create an environment instance.
env = make(
# Specification or name to registered specification.
"connectx",
# Override default and environment configuration.
configuration={"rows": 9, "columns": 10},
# Initialize the environment from a prior state (episode resume).
steps=[],
# Enable verbose logging.
debug=True
)
```
## Configuration
There are two types of configuration: Defaults applying to every environment and those specific to the environment. The following is a list of the default configuration:
| Name | Description |
| ------------ | --------------------------------------------------------------- |
| episodeSteps | Maximum number of steps in the episode. |
| agentTimeout | Maximum runtime (seconds) to initialize an agent. |
| actTimeout | Maximum runtime (seconds) to obtain an action from an agent. |
| runTimeout | Maximum runtime (seconds) of an episode (not necessarily DONE). |
| maxLogLength | Maximum log length (number of characters, `None` -> no limit) |
```python
env = make("connectx", configuration={
"columns": 19, # Specific to ConnectX.
"actTimeout": 10,
})
```
## Resetting
Environments are reset by default after "make" (unless starting steps are passed in) as well as when calling "run". Reset can be called at anytime to clear the environment.
```python
num_agents = 2
reset_state = env.reset(num_agents)
```
## Running
Execute an episode against the environment using the passed in agents until they are no longer running (i.e. status != ACTIVE).
```python
steps = env.run([agent1, agent2])
print(steps)
```
## Evaluating
Evaluation is used to run an episode (environment + agents) multiple times and just return the rewards.
```python
from kaggle_environments import evaluate
# Same definitions as "make" above.
environment = "connectx"
configuration = {"rows": 10, "columns": 8, "inarow": 5}
steps = []
# Which agents to run repeatedly. Same as env.run(agents)
agents = ["random", agent1]
# How many times to run them.
num_episodes = 10
rewards = evaluate(environment, agents, configuration, steps, num_episodes)
```
## Stepping
Running above essentially just steps until no agent is still active. To execute a singular game loop, pass in actions directly for each agent. Note that this is normally used for training agents (most useful in a single agent setup such as using the gym interface).
```python
agent1_action = agent1(env.state[0].observation)
agent2_action = agent2(env.state[1].observation)
state = env.step([agent1_action, agent2_action])
```
## Playing
A few environments offer an interactive play against agents within jupyter notebooks. An example of this is using connectx:
```python
from kaggle_environments import make
env = make("connectx")
# None indicates which agent will be manually played.
env.play([None, "random"])
```
## Rendering
The following rendering modes are supported:
- json - Same as doing a json dump of `env.toJSON()`
- ansi - Ascii character representation of the environment.
- human - ansi just printed to stdout
- html - HTML player representation of the environment.
- ipython - html just printed to the output of a ipython notebook.
```python
out = env.render(mode="ansi")
print(out)
```
# Command Line
```sh
> python main.py -h
```
## List Registered Environments
```sh
> python main.py list
```
## Evaluate Episode Rewards
```sh
python main.py evaluate --environment tictactoe --agents random random --episodes 10
```
## Run an Episode
```sh
> python main.py run --environment tictactoe --agents random /pathtomy/agent.py --debug True
```
## Load an Episode
This is useful when converting an episode json output into html.
```sh
python main.py load --environment tictactoe --steps [...] --render '{"mode": "html"}'
```
# HTTP Server
The HTTP server contains the same interface/actions as the CLI above merging both POST body and GET params.
## Setup
```bash
python main.py http-server --port=8012 --host=0.0.0.0
```
### Running Agents on Separate Servers
```python
# How to run agent on a separate server.
import requests
import json
path_to_agent1 = "/home/ajeffries/git/playground/agent1.py"
path_to_agent2 = "/home/ajeffries/git/playground/agent2.py"
agent1_url = f"http://localhost:5001?agents[]={path_to_agent1}"
agent2_url = f"http://localhost:5002?agents[]={path_to_agent2}"
body = {
"action": "run",
"environment": "tictactoe",
"agents": [agent1_url, agent2_url]
}
resp = requests.post(url="http://localhost:5000", data=json.dumps(body)).json()
# Inflate the response replay to visualize.
from kaggle_environments import make
env = make("tictactoe", steps=resp["steps"], debug=True)
env.render(mode="ipython")
print(resp)
```
%prep
%autosetup -n kaggle-environments-1.13.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-kaggle-environments -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.13.0-1
- Package Spec generated
|