summaryrefslogtreecommitdiff
path: root/python-kclpy.spec
blob: 8e30d374e18dcf81d3d67bae764826e6b9a32aa7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
%global _empty_manifest_terminate_build 0
Name:		python-kclpy
Version:	0.2.0
Release:	1
Summary:	A python interface for the Amazon Kinesis Client Library MultiLangDaemon
License:	Amazon Software License
URL:		https://github.com/empiricalresults/kclpy
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/3f/19/687917d4e8c097163767318849f17e215a45277f18c847f799b7cfb59858/kclpy-0.2.0.tar.gz
BuildArch:	noarch


%description
# kclpy

This is a fork of the [Amazon Kinesis Client Library for Python](https://github.com/awslabs/amazon-kinesis-client-python),
aiming to simplify consuming a kinesis stream using the [Amazon's Kinesis Client Library (KCL)](http://docs.aws.amazon.com/kinesis/latest/dev/developing-consumers-with-kcl.html) multi lang daemon interface.


## Why

It should be easy to consume a kinesis stream in python.  This library provides a python API to the KCL.

## Usage

Install it:

```sh
> pip install kclpy
```

Implement a RecordProcessor.  See http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-implementation-app-py.html for details on the RecordProcessor interface.

```python
import kclpy
import json

class MyStreamProcessor(kclpy.RecordProcessor):

    def process_record(self, data, partition_key, sequence_number):

        try:
            # assumes the incoming kinesis record is json
            data = json.loads(data)
            user = data.get("user")
            
            # explicitly return True to force a checkpoint (otherwise the default)
            # checkpointing strategy is used
            return True

        except ValueError:
            # not valid json
            log.error("Invalid json placed on queue, nothing we can do")
            return


def main():
    kclpy.start(MyStreamProcessor())

if __name__ == '__main__':
    main()
```

## Running

Running this directly wont do anything other than wait for records via STDIN.  The accompanying [Sylvite](https://github.com/empiricalresults/sylvite) library is an executable jar that will launch our record processor and feed it records.

See the [Sylvite](https://github.com/empiricalresults/sylvite) library for details and a pre-built jar.

```sh
> java -jar sylvite.jar --config=myapp.properties
```

## Logging

This library uses the standard python logging module (all logs under the namespace 'kclpy').  The KCL multi-daemon library expects well formed data on STDOUT, so be sure to configure your logging to use STDERR or a file.  Do not use print statements in your processor!


## Background

The key concept to understand when using the KCL's multi-lang daemon is that there is a Java process doing all communication with the kinesis API and a language agnostic child process that reads and writes from STDIN/STDOUT.  This is very similar to how Hadoop streaming works.  In order to consume the stream, we need to start up a Java process, which will in-turn start up a child process that will actually handle consuming the stream data.

While this sounds complicated, building on the KCL gives us the advantage of all the checkpointing, resharding and monitoring work that is baked into the KCL.  The KCL is also maintained by the awslabs team, so any future enhancements will be handled for free.


## RecordProcessor

kclpy is based on awslabs' sample code, with only a few minor tweaks in logging and checkpointing.

### API

Refer to [Amazon's documentation](http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-implementation-app-py.html), this fork maintains compatibility with the original implementation.


### Checkpointing

The KCL uses a DynamoDB table to maintain it's current position in the stream (checkpoint).  kclpy allows you to customize the checkpointing behaviour.  The following kwargs can be passed to kclpy.RecordProcessor:

* checkpoint_freq_seconds - Checkpoint at a fixed interval (in seconds).
* records_per_checkpoint - Checkpoint at a fixed number of records processed.

```python
def main():
    # automatically checkpoint every 60 seconds
    every_minute_processor = MyStreamProcessor(checkpoint_freq_seconds=60)
    
    # or checkpoint every 100 records
    every_hundred_records_processor = MyStreamProcessor(records_per_checkpoint=100)
    
    #todo: start the processor
```

Alternatively, you can force an explict checkpoint by returning True in your *process_record* call.  But be warned, doing this every record will result in a lot of writes to your DynamoDB table.

```python
import kclpy

def process_data(data):
    # if this is a special record, tell the library to checkpoint so we don't process
    # it again.
    return True

class MyStreamProcessor(kclpy.RecordProcessor):

    def process_record(self, data, partition_key, sequence_number):
        should_checkpoint = process_data(data)
        return should_checkpoint
        
def main():
    # checkpoints will only be made if process_record() returns True
    # probably not a great idea in the general case
    manual_checkpointer = MyStreamProcessor(
        checkpoint_freq_seconds=0, 
        records_per_checkpoint=0
    )        
    
    #todo: start the processor
```



%package -n python3-kclpy
Summary:	A python interface for the Amazon Kinesis Client Library MultiLangDaemon
Provides:	python-kclpy
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-kclpy
# kclpy

This is a fork of the [Amazon Kinesis Client Library for Python](https://github.com/awslabs/amazon-kinesis-client-python),
aiming to simplify consuming a kinesis stream using the [Amazon's Kinesis Client Library (KCL)](http://docs.aws.amazon.com/kinesis/latest/dev/developing-consumers-with-kcl.html) multi lang daemon interface.


## Why

It should be easy to consume a kinesis stream in python.  This library provides a python API to the KCL.

## Usage

Install it:

```sh
> pip install kclpy
```

Implement a RecordProcessor.  See http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-implementation-app-py.html for details on the RecordProcessor interface.

```python
import kclpy
import json

class MyStreamProcessor(kclpy.RecordProcessor):

    def process_record(self, data, partition_key, sequence_number):

        try:
            # assumes the incoming kinesis record is json
            data = json.loads(data)
            user = data.get("user")
            
            # explicitly return True to force a checkpoint (otherwise the default)
            # checkpointing strategy is used
            return True

        except ValueError:
            # not valid json
            log.error("Invalid json placed on queue, nothing we can do")
            return


def main():
    kclpy.start(MyStreamProcessor())

if __name__ == '__main__':
    main()
```

## Running

Running this directly wont do anything other than wait for records via STDIN.  The accompanying [Sylvite](https://github.com/empiricalresults/sylvite) library is an executable jar that will launch our record processor and feed it records.

See the [Sylvite](https://github.com/empiricalresults/sylvite) library for details and a pre-built jar.

```sh
> java -jar sylvite.jar --config=myapp.properties
```

## Logging

This library uses the standard python logging module (all logs under the namespace 'kclpy').  The KCL multi-daemon library expects well formed data on STDOUT, so be sure to configure your logging to use STDERR or a file.  Do not use print statements in your processor!


## Background

The key concept to understand when using the KCL's multi-lang daemon is that there is a Java process doing all communication with the kinesis API and a language agnostic child process that reads and writes from STDIN/STDOUT.  This is very similar to how Hadoop streaming works.  In order to consume the stream, we need to start up a Java process, which will in-turn start up a child process that will actually handle consuming the stream data.

While this sounds complicated, building on the KCL gives us the advantage of all the checkpointing, resharding and monitoring work that is baked into the KCL.  The KCL is also maintained by the awslabs team, so any future enhancements will be handled for free.


## RecordProcessor

kclpy is based on awslabs' sample code, with only a few minor tweaks in logging and checkpointing.

### API

Refer to [Amazon's documentation](http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-implementation-app-py.html), this fork maintains compatibility with the original implementation.


### Checkpointing

The KCL uses a DynamoDB table to maintain it's current position in the stream (checkpoint).  kclpy allows you to customize the checkpointing behaviour.  The following kwargs can be passed to kclpy.RecordProcessor:

* checkpoint_freq_seconds - Checkpoint at a fixed interval (in seconds).
* records_per_checkpoint - Checkpoint at a fixed number of records processed.

```python
def main():
    # automatically checkpoint every 60 seconds
    every_minute_processor = MyStreamProcessor(checkpoint_freq_seconds=60)
    
    # or checkpoint every 100 records
    every_hundred_records_processor = MyStreamProcessor(records_per_checkpoint=100)
    
    #todo: start the processor
```

Alternatively, you can force an explict checkpoint by returning True in your *process_record* call.  But be warned, doing this every record will result in a lot of writes to your DynamoDB table.

```python
import kclpy

def process_data(data):
    # if this is a special record, tell the library to checkpoint so we don't process
    # it again.
    return True

class MyStreamProcessor(kclpy.RecordProcessor):

    def process_record(self, data, partition_key, sequence_number):
        should_checkpoint = process_data(data)
        return should_checkpoint
        
def main():
    # checkpoints will only be made if process_record() returns True
    # probably not a great idea in the general case
    manual_checkpointer = MyStreamProcessor(
        checkpoint_freq_seconds=0, 
        records_per_checkpoint=0
    )        
    
    #todo: start the processor
```



%package help
Summary:	Development documents and examples for kclpy
Provides:	python3-kclpy-doc
%description help
# kclpy

This is a fork of the [Amazon Kinesis Client Library for Python](https://github.com/awslabs/amazon-kinesis-client-python),
aiming to simplify consuming a kinesis stream using the [Amazon's Kinesis Client Library (KCL)](http://docs.aws.amazon.com/kinesis/latest/dev/developing-consumers-with-kcl.html) multi lang daemon interface.


## Why

It should be easy to consume a kinesis stream in python.  This library provides a python API to the KCL.

## Usage

Install it:

```sh
> pip install kclpy
```

Implement a RecordProcessor.  See http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-implementation-app-py.html for details on the RecordProcessor interface.

```python
import kclpy
import json

class MyStreamProcessor(kclpy.RecordProcessor):

    def process_record(self, data, partition_key, sequence_number):

        try:
            # assumes the incoming kinesis record is json
            data = json.loads(data)
            user = data.get("user")
            
            # explicitly return True to force a checkpoint (otherwise the default)
            # checkpointing strategy is used
            return True

        except ValueError:
            # not valid json
            log.error("Invalid json placed on queue, nothing we can do")
            return


def main():
    kclpy.start(MyStreamProcessor())

if __name__ == '__main__':
    main()
```

## Running

Running this directly wont do anything other than wait for records via STDIN.  The accompanying [Sylvite](https://github.com/empiricalresults/sylvite) library is an executable jar that will launch our record processor and feed it records.

See the [Sylvite](https://github.com/empiricalresults/sylvite) library for details and a pre-built jar.

```sh
> java -jar sylvite.jar --config=myapp.properties
```

## Logging

This library uses the standard python logging module (all logs under the namespace 'kclpy').  The KCL multi-daemon library expects well formed data on STDOUT, so be sure to configure your logging to use STDERR or a file.  Do not use print statements in your processor!


## Background

The key concept to understand when using the KCL's multi-lang daemon is that there is a Java process doing all communication with the kinesis API and a language agnostic child process that reads and writes from STDIN/STDOUT.  This is very similar to how Hadoop streaming works.  In order to consume the stream, we need to start up a Java process, which will in-turn start up a child process that will actually handle consuming the stream data.

While this sounds complicated, building on the KCL gives us the advantage of all the checkpointing, resharding and monitoring work that is baked into the KCL.  The KCL is also maintained by the awslabs team, so any future enhancements will be handled for free.


## RecordProcessor

kclpy is based on awslabs' sample code, with only a few minor tweaks in logging and checkpointing.

### API

Refer to [Amazon's documentation](http://docs.aws.amazon.com/kinesis/latest/dev/kinesis-record-processor-implementation-app-py.html), this fork maintains compatibility with the original implementation.


### Checkpointing

The KCL uses a DynamoDB table to maintain it's current position in the stream (checkpoint).  kclpy allows you to customize the checkpointing behaviour.  The following kwargs can be passed to kclpy.RecordProcessor:

* checkpoint_freq_seconds - Checkpoint at a fixed interval (in seconds).
* records_per_checkpoint - Checkpoint at a fixed number of records processed.

```python
def main():
    # automatically checkpoint every 60 seconds
    every_minute_processor = MyStreamProcessor(checkpoint_freq_seconds=60)
    
    # or checkpoint every 100 records
    every_hundred_records_processor = MyStreamProcessor(records_per_checkpoint=100)
    
    #todo: start the processor
```

Alternatively, you can force an explict checkpoint by returning True in your *process_record* call.  But be warned, doing this every record will result in a lot of writes to your DynamoDB table.

```python
import kclpy

def process_data(data):
    # if this is a special record, tell the library to checkpoint so we don't process
    # it again.
    return True

class MyStreamProcessor(kclpy.RecordProcessor):

    def process_record(self, data, partition_key, sequence_number):
        should_checkpoint = process_data(data)
        return should_checkpoint
        
def main():
    # checkpoints will only be made if process_record() returns True
    # probably not a great idea in the general case
    manual_checkpointer = MyStreamProcessor(
        checkpoint_freq_seconds=0, 
        records_per_checkpoint=0
    )        
    
    #todo: start the processor
```



%prep
%autosetup -n kclpy-0.2.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-kclpy -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.0-1
- Package Spec generated