summaryrefslogtreecommitdiff
path: root/python-kedro.spec
blob: 0b7d6e08a5ea682897d3b75d68ea5fa8ff7fc300 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
%global _empty_manifest_terminate_build 0
Name:		python-kedro
Version:	0.18.7
Release:	1
Summary:	Kedro helps you build production-ready data and analytics pipelines
License:	Apache Software License (Apache 2.0)
URL:		https://github.com/kedro-org/kedro
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/1c/e4/5be14c8372d0063264020d00b7337e1d1685e57b7f426109521783e17332/kedro-0.18.7.tar.gz
BuildArch:	noarch

Requires:	python3-anyconfig
Requires:	python3-attrs
Requires:	python3-cachetools
Requires:	python3-click
Requires:	python3-cookiecutter
Requires:	python3-dynaconf
Requires:	python3-gitpython
Requires:	python3-importlib-resources
Requires:	python3-jmespath
Requires:	python3-more-itertools
Requires:	python3-omegaconf
Requires:	python3-pip-tools
Requires:	python3-pluggy
Requires:	python3-PyYAML
Requires:	python3-rich
Requires:	python3-rope
Requires:	python3-setuptools
Requires:	python3-toml
Requires:	python3-toposort
Requires:	python3-importlib-metadata
Requires:	python3-fsspec
Requires:	python3-fsspec
Requires:	python3-importlib-metadata
Requires:	python3-Jinja2
Requires:	python3-Pillow
Requires:	python3-PyYAML
Requires:	python3-SQLAlchemy
Requires:	python3-biopython
Requires:	python3-compress-pickle[lz4]
Requires:	python3-dask[complete]
Requires:	python3-delta-spark
Requires:	python3-docutils
Requires:	python3-geopandas
Requires:	python3-hdfs
Requires:	python3-holoviews
Requires:	python3-ipykernel
Requires:	python3-lxml
Requires:	python3-matplotlib
Requires:	python3-myst-parser
Requires:	python3-nbsphinx
Requires:	python3-nbstripout
Requires:	python3-networkx
Requires:	python3-opencv-python
Requires:	python3-openpyxl
Requires:	python3-pandas-gbq
Requires:	python3-pandas
Requires:	python3-plotly
Requires:	python3-pyarrow
Requires:	python3-pyproj
Requires:	python3-pyspark
Requires:	python3-redis
Requires:	python3-requests
Requires:	python3-s3fs
Requires:	python3-scikit-learn
Requires:	python3-scipy
Requires:	python3-sphinx-autodoc-typehints
Requires:	python3-sphinx-copybutton
Requires:	python3-sphinx-rtd-theme
Requires:	python3-sphinxcontrib-mermaid
Requires:	python3-sphinx
Requires:	python3-tensorflow
Requires:	python3-triad
Requires:	python3-tables
Requires:	python3-tables
Requires:	python3-requests
Requires:	python3-requests
Requires:	python3-biopython
Requires:	python3-biopython
Requires:	python3-dask[complete]
Requires:	python3-triad
Requires:	python3-dask[complete]
Requires:	python3-triad
Requires:	python3-docutils
Requires:	python3-sphinx
Requires:	python3-sphinx-rtd-theme
Requires:	python3-nbsphinx
Requires:	python3-nbstripout
Requires:	python3-sphinx-autodoc-typehints
Requires:	python3-sphinx-copybutton
Requires:	python3-ipykernel
Requires:	python3-sphinxcontrib-mermaid
Requires:	python3-myst-parser
Requires:	python3-Jinja2
Requires:	python3-geopandas
Requires:	python3-pyproj
Requires:	python3-geopandas
Requires:	python3-pyproj
Requires:	python3-holoviews
Requires:	python3-holoviews
Requires:	python3-matplotlib
Requires:	python3-matplotlib
Requires:	python3-networkx
Requires:	python3-networkx
Requires:	python3-SQLAlchemy
Requires:	python3-lxml
Requires:	python3-openpyxl
Requires:	python3-pandas-gbq
Requires:	python3-pandas
Requires:	python3-pyarrow
Requires:	python3-pandas
Requires:	python3-pandas
Requires:	python3-openpyxl
Requires:	python3-pandas
Requires:	python3-pandas
Requires:	python3-pandas-gbq
Requires:	python3-pandas
Requires:	python3-pandas-gbq
Requires:	python3-pandas
Requires:	python3-pandas
Requires:	python3-tables
Requires:	python3-tables
Requires:	python3-pandas
Requires:	python3-pandas
Requires:	python3-pyarrow
Requires:	python3-pandas
Requires:	python3-SQLAlchemy
Requires:	python3-pandas
Requires:	python3-SQLAlchemy
Requires:	python3-pandas
Requires:	python3-lxml
Requires:	python3-tables
Requires:	python3-tables
Requires:	python3-compress-pickle[lz4]
Requires:	python3-compress-pickle[lz4]
Requires:	python3-Pillow
Requires:	python3-Pillow
Requires:	python3-pandas
Requires:	python3-plotly
Requires:	python3-plotly
Requires:	python3-pandas
Requires:	python3-plotly
Requires:	python3-redis
Requires:	python3-delta-spark
Requires:	python3-hdfs
Requires:	python3-pyspark
Requires:	python3-s3fs
Requires:	python3-pyspark
Requires:	python3-hdfs
Requires:	python3-s3fs
Requires:	python3-delta-spark
Requires:	python3-pyspark
Requires:	python3-hdfs
Requires:	python3-s3fs
Requires:	python3-pyspark
Requires:	python3-hdfs
Requires:	python3-s3fs
Requires:	python3-pyspark
Requires:	python3-hdfs
Requires:	python3-s3fs
Requires:	python3-scikit-learn
Requires:	python3-scipy
Requires:	python3-scikit-learn
Requires:	python3-scipy
Requires:	python3-tensorflow
Requires:	python3-tensorflow
Requires:	python3-opencv-python
Requires:	python3-opencv-python
Requires:	python3-PyYAML
Requires:	python3-pandas
Requires:	python3-pandas
Requires:	python3-PyYAML

%description
![Kedro Logo Banner](https://raw.githubusercontent.com/kedro-org/kedro/develop/static/img/kedro_banner.png)
[![Python version](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue.svg)](https://pypi.org/project/kedro/)
[![PyPI version](https://badge.fury.io/py/kedro.svg)](https://pypi.org/project/kedro/)
[![Conda version](https://img.shields.io/conda/vn/conda-forge/kedro.svg)](https://anaconda.org/conda-forge/kedro)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/kedro-org/kedro/blob/main/LICENSE.md)
[![Slack Organisation](https://img.shields.io/badge/slack-chat-blueviolet.svg?label=Kedro%20Slack&logo=slack)](https://slack.kedro.org)
![CircleCI - Main Branch](https://img.shields.io/circleci/build/github/kedro-org/kedro/main?label=main)
![Develop Branch Build](https://img.shields.io/circleci/build/github/kedro-org/kedro/develop?label=develop)
[![Documentation](https://readthedocs.org/projects/kedro/badge/?version=stable)](https://docs.kedro.org/)
[![OpenSSF Best Practices](https://bestpractices.coreinfrastructure.org/projects/6711/badge)](https://bestpractices.coreinfrastructure.org/projects/6711)


## What is Kedro?

Kedro is an open-source Python framework to create reproducible, maintainable, and modular data science code. It uses software engineering best practices to help you build production-ready data engineering and data science pipelines.

Kedro is hosted by the [LF AI & Data Foundation](https://lfaidata.foundation/).

## How do I install Kedro?

To install Kedro from the Python Package Index (PyPI) run:

```
pip install kedro
```

It is also possible to install Kedro using `conda`:

```
conda install -c conda-forge kedro
```

Our [Get Started guide](https://docs.kedro.org/en/stable/get_started/install.html) contains full installation instructions, and includes how to set up Python virtual environments.


## What are the main features of Kedro?

![Kedro-Viz Pipeline Visualisation](https://github.com/kedro-org/kedro-viz/blob/main/.github/img/banner.png)
*A pipeline visualisation generated using [Kedro-Viz](https://github.com/kedro-org/kedro-viz)*


| Feature | What is this? |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Template | A standard, modifiable and easy-to-use project template based on [Cookiecutter Data Science](https://github.com/drivendata/cookiecutter-data-science/). |
| Data Catalog | A series of lightweight data connectors used to save and load data across many different file formats and file systems, including local and network file systems, cloud object stores, and HDFS. The Data Catalog also includes data and model versioning for file-based systems. |
| Pipeline Abstraction | Automatic resolution of dependencies between pure Python functions and data pipeline visualisation using [Kedro-Viz](https://github.com/kedro-org/kedro-viz). |
| Coding Standards | Test-driven development using [`pytest`](https://github.com/pytest-dev/pytest), produce well-documented code using [Sphinx](http://www.sphinx-doc.org/en/master/), create linted code with support for [`flake8`](https://github.com/PyCQA/flake8), [`isort`](https://github.com/PyCQA/isort) and [`black`](https://github.com/psf/black) and make use of the standard Python logging library. |
| Flexible Deployment | Deployment strategies that include single or distributed-machine deployment as well as additional support for deploying on Argo, Prefect, Kubeflow, AWS Batch and Databricks. |


## How do I use Kedro?

The [Kedro documentation](https://docs.kedro.org/en/stable/) first explains [how to install Kedro](https://docs.kedro.org/en/stable/get_started/install.html) and then introduces [key Kedro concepts](https://docs.kedro.org/en/stable/get_started/kedro_concepts.html).

- The first example illustrates the [basics of a Kedro project](https://docs.kedro.org/en/stable/get_started/new_project.html) using the Iris dataset
- You can then review the [spaceflights tutorial](https://docs.kedro.org/en/stable/tutorial/tutorial_template.html) to build a Kedro project for hands-on experience

For new and intermediate Kedro users, there's a comprehensive section on [how to visualise Kedro projects using Kedro-Viz](https://docs.kedro.org/en/stable/visualisation/kedro-viz_visualisation.html) and [how to work with Kedro and Jupyter notebooks](https://docs.kedro.org/en/stable/notebooks_and_ipython/kedro_and_notebooks).

Further documentation is available for more advanced Kedro usage and deployment. We also recommend the [glossary](https://docs.kedro.org/en/stable/resources/glossary.html) and the [API reference documentation](/kedro) for additional information.


## Why does Kedro exist?

Kedro is built upon our collective best-practice (and mistakes) trying to deliver real-world ML applications that have vast amounts of raw unvetted data. We developed Kedro to achieve the following:
 - To address the main shortcomings of Jupyter notebooks, one-off scripts, and glue-code because there is a focus on
  creating **maintainable data science code**
 - To enhance **team collaboration** when different team members have varied exposure to software engineering concepts
 - To increase efficiency, because applied concepts like modularity and separation of concerns inspire the creation of
  **reusable analytics code**


## The humans behind Kedro

The [Kedro product team](https://docs.kedro.org/en/stable/faq/faq.html#who-maintains-kedro) and a number of [open source contributors from across the world](https://github.com/kedro-org/kedro/releases) maintain Kedro.


## Can I contribute?

Yes! Want to help build Kedro? Check out our [guide to contributing to Kedro](https://github.com/kedro-org/kedro/blob/main/CONTRIBUTING.md).


## Where can I learn more?

There is a growing community around Kedro. Have a look at the [Kedro FAQs](https://docs.kedro.org/en/stable/faq/faq.html#how-can-i-find-out-more-about-kedro) to find projects using Kedro and links to articles, podcasts and talks.


## Who likes Kedro?

There are Kedro users across the world, who work at start-ups, major enterprises and academic institutions like [Absa](https://www.absa.co.za/),
[Acensi](https://acensi.eu/page/home),
[Advanced Programming Solutions SL](https://www.linkedin.com/feed/update/urn:li:activity:6863494681372721152/),
[AI Singapore](https://makerspace.aisingapore.org/2020/08/leveraging-kedro-in-100e/),
[AMAI GmbH](https://www.am.ai/),
[Augment Partners](https://www.linkedin.com/posts/augment-partners_kedro-cheat-sheet-by-augment-activity-6858927624631283712-Ivqk),
[AXA UK](https://www.axa.co.uk/),
[Belfius](https://www.linkedin.com/posts/vangansen_mlops-machinelearning-kedro-activity-6772379995953238016-JUmo),
[Beamery](https://medium.com/hacking-talent/production-code-for-data-science-and-our-experience-with-kedro-60bb69934d1f),
[Caterpillar](https://www.caterpillar.com/),
[CRIM](https://www.crim.ca/en/),
[Dendra Systems](https://www.dendra.io/),
[Element AI](https://www.elementai.com/),
[GetInData](https://getindata.com/blog/running-machine-learning-pipelines-kedro-kubeflow-airflow),
[GMO](https://recruit.gmo.jp/engineer/jisedai/engineer/jisedai/engineer/jisedai/engineer/jisedai/engineer/jisedai/blog/kedro_and_mlflow_tracking/),
[Indicium](https://medium.com/indiciumtech/how-to-build-models-as-products-using-mlops-part-2-machine-learning-pipelines-with-kedro-10337c48de92),
[Imperial College London](https://github.com/dssg/barefoot-winnie-public),
[ING](https://www.ing.com),
[Jungle Scout](https://junglescouteng.medium.com/jungle-scout-case-study-kedro-airflow-and-mlflow-use-on-production-code-150d7231d42e),
[Helvetas](https://www.linkedin.com/posts/lionel-trebuchon_mlflow-kedro-ml-ugcPost-6747074322164154368-umKw),
[Leapfrog](https://www.lftechnology.com/blog/ai-pipeline-kedro/),
[McKinsey & Company](https://www.mckinsey.com/alumni/news-and-insights/global-news/firm-news/kedro-from-proprietary-to-open-source),
[Mercado Libre Argentina](https://www.mercadolibre.com.ar),
[Modec](https://www.modec.com/),
[Mosaic Data Science](https://www.youtube.com/watch?v=fCWGevB366g),
[NaranjaX](https://www.youtube.com/watch?v=_0kMmRfltEQ),
[NASA](https://github.com/nasa/ML-airport-taxi-out),
[NHS AI Lab](https://nhsx.github.io/skunkworks/synthetic-data-pipeline),
[Open Data Science LatAm](https://www.odesla.org/),
[Prediqt](https://prediqt.co/),
[QuantumBlack](https://medium.com/quantumblack/introducing-kedro-the-open-source-library-for-production-ready-machine-learning-code-d1c6d26ce2cf),
[ReSpo.Vision](https://neptune.ai/customers/respo-vision),
[Retrieva](https://tech.retrieva.jp/entry/2020/07/28/181414),
[Roche](https://www.roche.com/),
[Sber](https://www.linkedin.com/posts/seleznev-artem_welcome-to-kedros-documentation-kedro-activity-6767523561109385216-woTt),
[Société Générale](https://www.societegenerale.com/en),
[Telkomsel](https://medium.com/life-at-telkomsel/how-we-build-a-production-grade-data-pipeline-7004e56c8c98),
[Universidad Rey Juan Carlos](https://github.com/vchaparro/MasterThesis-wind-power-forecasting/blob/master/thesis.pdf),
[UrbanLogiq](https://urbanlogiq.com/),
[Wildlife Studios](https://wildlifestudios.com),
[WovenLight](https://www.wovenlight.com/) and
[XP](https://youtu.be/wgnGOVNkXqU?t=2210).

Kedro won [Best Technical Tool or Framework for AI](https://awards.ai/the-awards/previous-awards/the-4th-ai-award-winners/) in the 2019 Awards AI competition and a merit award for the 2020 [UK Technical Communication Awards](https://uktcawards.com/announcing-the-award-winners-for-2020/). It is listed on the 2020 [ThoughtWorks Technology Radar](https://www.thoughtworks.com/radar/languages-and-frameworks/kedro) and the 2020 [Data & AI Landscape](https://mattturck.com/data2020/). Kedro has received an [honorable mention in the User Experience category in Fast Company’s 2022 Innovation by Design Awards](https://www.fastcompany.com/90772252/user-experience-innovation-by-design-2022).


## How can I cite Kedro?

If you're an academic, Kedro can also help you, for example, as a tool to solve the problem of reproducible research. Use the "Cite this repository" button on [our repository](https://github.com/kedro-org/kedro) to generate a citation from the [CITATION.cff file](https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files).


%package -n python3-kedro
Summary:	Kedro helps you build production-ready data and analytics pipelines
Provides:	python-kedro
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-kedro
![Kedro Logo Banner](https://raw.githubusercontent.com/kedro-org/kedro/develop/static/img/kedro_banner.png)
[![Python version](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue.svg)](https://pypi.org/project/kedro/)
[![PyPI version](https://badge.fury.io/py/kedro.svg)](https://pypi.org/project/kedro/)
[![Conda version](https://img.shields.io/conda/vn/conda-forge/kedro.svg)](https://anaconda.org/conda-forge/kedro)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/kedro-org/kedro/blob/main/LICENSE.md)
[![Slack Organisation](https://img.shields.io/badge/slack-chat-blueviolet.svg?label=Kedro%20Slack&logo=slack)](https://slack.kedro.org)
![CircleCI - Main Branch](https://img.shields.io/circleci/build/github/kedro-org/kedro/main?label=main)
![Develop Branch Build](https://img.shields.io/circleci/build/github/kedro-org/kedro/develop?label=develop)
[![Documentation](https://readthedocs.org/projects/kedro/badge/?version=stable)](https://docs.kedro.org/)
[![OpenSSF Best Practices](https://bestpractices.coreinfrastructure.org/projects/6711/badge)](https://bestpractices.coreinfrastructure.org/projects/6711)


## What is Kedro?

Kedro is an open-source Python framework to create reproducible, maintainable, and modular data science code. It uses software engineering best practices to help you build production-ready data engineering and data science pipelines.

Kedro is hosted by the [LF AI & Data Foundation](https://lfaidata.foundation/).

## How do I install Kedro?

To install Kedro from the Python Package Index (PyPI) run:

```
pip install kedro
```

It is also possible to install Kedro using `conda`:

```
conda install -c conda-forge kedro
```

Our [Get Started guide](https://docs.kedro.org/en/stable/get_started/install.html) contains full installation instructions, and includes how to set up Python virtual environments.


## What are the main features of Kedro?

![Kedro-Viz Pipeline Visualisation](https://github.com/kedro-org/kedro-viz/blob/main/.github/img/banner.png)
*A pipeline visualisation generated using [Kedro-Viz](https://github.com/kedro-org/kedro-viz)*


| Feature | What is this? |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Template | A standard, modifiable and easy-to-use project template based on [Cookiecutter Data Science](https://github.com/drivendata/cookiecutter-data-science/). |
| Data Catalog | A series of lightweight data connectors used to save and load data across many different file formats and file systems, including local and network file systems, cloud object stores, and HDFS. The Data Catalog also includes data and model versioning for file-based systems. |
| Pipeline Abstraction | Automatic resolution of dependencies between pure Python functions and data pipeline visualisation using [Kedro-Viz](https://github.com/kedro-org/kedro-viz). |
| Coding Standards | Test-driven development using [`pytest`](https://github.com/pytest-dev/pytest), produce well-documented code using [Sphinx](http://www.sphinx-doc.org/en/master/), create linted code with support for [`flake8`](https://github.com/PyCQA/flake8), [`isort`](https://github.com/PyCQA/isort) and [`black`](https://github.com/psf/black) and make use of the standard Python logging library. |
| Flexible Deployment | Deployment strategies that include single or distributed-machine deployment as well as additional support for deploying on Argo, Prefect, Kubeflow, AWS Batch and Databricks. |


## How do I use Kedro?

The [Kedro documentation](https://docs.kedro.org/en/stable/) first explains [how to install Kedro](https://docs.kedro.org/en/stable/get_started/install.html) and then introduces [key Kedro concepts](https://docs.kedro.org/en/stable/get_started/kedro_concepts.html).

- The first example illustrates the [basics of a Kedro project](https://docs.kedro.org/en/stable/get_started/new_project.html) using the Iris dataset
- You can then review the [spaceflights tutorial](https://docs.kedro.org/en/stable/tutorial/tutorial_template.html) to build a Kedro project for hands-on experience

For new and intermediate Kedro users, there's a comprehensive section on [how to visualise Kedro projects using Kedro-Viz](https://docs.kedro.org/en/stable/visualisation/kedro-viz_visualisation.html) and [how to work with Kedro and Jupyter notebooks](https://docs.kedro.org/en/stable/notebooks_and_ipython/kedro_and_notebooks).

Further documentation is available for more advanced Kedro usage and deployment. We also recommend the [glossary](https://docs.kedro.org/en/stable/resources/glossary.html) and the [API reference documentation](/kedro) for additional information.


## Why does Kedro exist?

Kedro is built upon our collective best-practice (and mistakes) trying to deliver real-world ML applications that have vast amounts of raw unvetted data. We developed Kedro to achieve the following:
 - To address the main shortcomings of Jupyter notebooks, one-off scripts, and glue-code because there is a focus on
  creating **maintainable data science code**
 - To enhance **team collaboration** when different team members have varied exposure to software engineering concepts
 - To increase efficiency, because applied concepts like modularity and separation of concerns inspire the creation of
  **reusable analytics code**


## The humans behind Kedro

The [Kedro product team](https://docs.kedro.org/en/stable/faq/faq.html#who-maintains-kedro) and a number of [open source contributors from across the world](https://github.com/kedro-org/kedro/releases) maintain Kedro.


## Can I contribute?

Yes! Want to help build Kedro? Check out our [guide to contributing to Kedro](https://github.com/kedro-org/kedro/blob/main/CONTRIBUTING.md).


## Where can I learn more?

There is a growing community around Kedro. Have a look at the [Kedro FAQs](https://docs.kedro.org/en/stable/faq/faq.html#how-can-i-find-out-more-about-kedro) to find projects using Kedro and links to articles, podcasts and talks.


## Who likes Kedro?

There are Kedro users across the world, who work at start-ups, major enterprises and academic institutions like [Absa](https://www.absa.co.za/),
[Acensi](https://acensi.eu/page/home),
[Advanced Programming Solutions SL](https://www.linkedin.com/feed/update/urn:li:activity:6863494681372721152/),
[AI Singapore](https://makerspace.aisingapore.org/2020/08/leveraging-kedro-in-100e/),
[AMAI GmbH](https://www.am.ai/),
[Augment Partners](https://www.linkedin.com/posts/augment-partners_kedro-cheat-sheet-by-augment-activity-6858927624631283712-Ivqk),
[AXA UK](https://www.axa.co.uk/),
[Belfius](https://www.linkedin.com/posts/vangansen_mlops-machinelearning-kedro-activity-6772379995953238016-JUmo),
[Beamery](https://medium.com/hacking-talent/production-code-for-data-science-and-our-experience-with-kedro-60bb69934d1f),
[Caterpillar](https://www.caterpillar.com/),
[CRIM](https://www.crim.ca/en/),
[Dendra Systems](https://www.dendra.io/),
[Element AI](https://www.elementai.com/),
[GetInData](https://getindata.com/blog/running-machine-learning-pipelines-kedro-kubeflow-airflow),
[GMO](https://recruit.gmo.jp/engineer/jisedai/engineer/jisedai/engineer/jisedai/engineer/jisedai/engineer/jisedai/blog/kedro_and_mlflow_tracking/),
[Indicium](https://medium.com/indiciumtech/how-to-build-models-as-products-using-mlops-part-2-machine-learning-pipelines-with-kedro-10337c48de92),
[Imperial College London](https://github.com/dssg/barefoot-winnie-public),
[ING](https://www.ing.com),
[Jungle Scout](https://junglescouteng.medium.com/jungle-scout-case-study-kedro-airflow-and-mlflow-use-on-production-code-150d7231d42e),
[Helvetas](https://www.linkedin.com/posts/lionel-trebuchon_mlflow-kedro-ml-ugcPost-6747074322164154368-umKw),
[Leapfrog](https://www.lftechnology.com/blog/ai-pipeline-kedro/),
[McKinsey & Company](https://www.mckinsey.com/alumni/news-and-insights/global-news/firm-news/kedro-from-proprietary-to-open-source),
[Mercado Libre Argentina](https://www.mercadolibre.com.ar),
[Modec](https://www.modec.com/),
[Mosaic Data Science](https://www.youtube.com/watch?v=fCWGevB366g),
[NaranjaX](https://www.youtube.com/watch?v=_0kMmRfltEQ),
[NASA](https://github.com/nasa/ML-airport-taxi-out),
[NHS AI Lab](https://nhsx.github.io/skunkworks/synthetic-data-pipeline),
[Open Data Science LatAm](https://www.odesla.org/),
[Prediqt](https://prediqt.co/),
[QuantumBlack](https://medium.com/quantumblack/introducing-kedro-the-open-source-library-for-production-ready-machine-learning-code-d1c6d26ce2cf),
[ReSpo.Vision](https://neptune.ai/customers/respo-vision),
[Retrieva](https://tech.retrieva.jp/entry/2020/07/28/181414),
[Roche](https://www.roche.com/),
[Sber](https://www.linkedin.com/posts/seleznev-artem_welcome-to-kedros-documentation-kedro-activity-6767523561109385216-woTt),
[Société Générale](https://www.societegenerale.com/en),
[Telkomsel](https://medium.com/life-at-telkomsel/how-we-build-a-production-grade-data-pipeline-7004e56c8c98),
[Universidad Rey Juan Carlos](https://github.com/vchaparro/MasterThesis-wind-power-forecasting/blob/master/thesis.pdf),
[UrbanLogiq](https://urbanlogiq.com/),
[Wildlife Studios](https://wildlifestudios.com),
[WovenLight](https://www.wovenlight.com/) and
[XP](https://youtu.be/wgnGOVNkXqU?t=2210).

Kedro won [Best Technical Tool or Framework for AI](https://awards.ai/the-awards/previous-awards/the-4th-ai-award-winners/) in the 2019 Awards AI competition and a merit award for the 2020 [UK Technical Communication Awards](https://uktcawards.com/announcing-the-award-winners-for-2020/). It is listed on the 2020 [ThoughtWorks Technology Radar](https://www.thoughtworks.com/radar/languages-and-frameworks/kedro) and the 2020 [Data & AI Landscape](https://mattturck.com/data2020/). Kedro has received an [honorable mention in the User Experience category in Fast Company’s 2022 Innovation by Design Awards](https://www.fastcompany.com/90772252/user-experience-innovation-by-design-2022).


## How can I cite Kedro?

If you're an academic, Kedro can also help you, for example, as a tool to solve the problem of reproducible research. Use the "Cite this repository" button on [our repository](https://github.com/kedro-org/kedro) to generate a citation from the [CITATION.cff file](https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files).


%package help
Summary:	Development documents and examples for kedro
Provides:	python3-kedro-doc
%description help
![Kedro Logo Banner](https://raw.githubusercontent.com/kedro-org/kedro/develop/static/img/kedro_banner.png)
[![Python version](https://img.shields.io/badge/python-3.7%20%7C%203.8%20%7C%203.9%20%7C%203.10-blue.svg)](https://pypi.org/project/kedro/)
[![PyPI version](https://badge.fury.io/py/kedro.svg)](https://pypi.org/project/kedro/)
[![Conda version](https://img.shields.io/conda/vn/conda-forge/kedro.svg)](https://anaconda.org/conda-forge/kedro)
[![License](https://img.shields.io/badge/license-Apache%202.0-blue.svg)](https://github.com/kedro-org/kedro/blob/main/LICENSE.md)
[![Slack Organisation](https://img.shields.io/badge/slack-chat-blueviolet.svg?label=Kedro%20Slack&logo=slack)](https://slack.kedro.org)
![CircleCI - Main Branch](https://img.shields.io/circleci/build/github/kedro-org/kedro/main?label=main)
![Develop Branch Build](https://img.shields.io/circleci/build/github/kedro-org/kedro/develop?label=develop)
[![Documentation](https://readthedocs.org/projects/kedro/badge/?version=stable)](https://docs.kedro.org/)
[![OpenSSF Best Practices](https://bestpractices.coreinfrastructure.org/projects/6711/badge)](https://bestpractices.coreinfrastructure.org/projects/6711)


## What is Kedro?

Kedro is an open-source Python framework to create reproducible, maintainable, and modular data science code. It uses software engineering best practices to help you build production-ready data engineering and data science pipelines.

Kedro is hosted by the [LF AI & Data Foundation](https://lfaidata.foundation/).

## How do I install Kedro?

To install Kedro from the Python Package Index (PyPI) run:

```
pip install kedro
```

It is also possible to install Kedro using `conda`:

```
conda install -c conda-forge kedro
```

Our [Get Started guide](https://docs.kedro.org/en/stable/get_started/install.html) contains full installation instructions, and includes how to set up Python virtual environments.


## What are the main features of Kedro?

![Kedro-Viz Pipeline Visualisation](https://github.com/kedro-org/kedro-viz/blob/main/.github/img/banner.png)
*A pipeline visualisation generated using [Kedro-Viz](https://github.com/kedro-org/kedro-viz)*


| Feature | What is this? |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project Template | A standard, modifiable and easy-to-use project template based on [Cookiecutter Data Science](https://github.com/drivendata/cookiecutter-data-science/). |
| Data Catalog | A series of lightweight data connectors used to save and load data across many different file formats and file systems, including local and network file systems, cloud object stores, and HDFS. The Data Catalog also includes data and model versioning for file-based systems. |
| Pipeline Abstraction | Automatic resolution of dependencies between pure Python functions and data pipeline visualisation using [Kedro-Viz](https://github.com/kedro-org/kedro-viz). |
| Coding Standards | Test-driven development using [`pytest`](https://github.com/pytest-dev/pytest), produce well-documented code using [Sphinx](http://www.sphinx-doc.org/en/master/), create linted code with support for [`flake8`](https://github.com/PyCQA/flake8), [`isort`](https://github.com/PyCQA/isort) and [`black`](https://github.com/psf/black) and make use of the standard Python logging library. |
| Flexible Deployment | Deployment strategies that include single or distributed-machine deployment as well as additional support for deploying on Argo, Prefect, Kubeflow, AWS Batch and Databricks. |


## How do I use Kedro?

The [Kedro documentation](https://docs.kedro.org/en/stable/) first explains [how to install Kedro](https://docs.kedro.org/en/stable/get_started/install.html) and then introduces [key Kedro concepts](https://docs.kedro.org/en/stable/get_started/kedro_concepts.html).

- The first example illustrates the [basics of a Kedro project](https://docs.kedro.org/en/stable/get_started/new_project.html) using the Iris dataset
- You can then review the [spaceflights tutorial](https://docs.kedro.org/en/stable/tutorial/tutorial_template.html) to build a Kedro project for hands-on experience

For new and intermediate Kedro users, there's a comprehensive section on [how to visualise Kedro projects using Kedro-Viz](https://docs.kedro.org/en/stable/visualisation/kedro-viz_visualisation.html) and [how to work with Kedro and Jupyter notebooks](https://docs.kedro.org/en/stable/notebooks_and_ipython/kedro_and_notebooks).

Further documentation is available for more advanced Kedro usage and deployment. We also recommend the [glossary](https://docs.kedro.org/en/stable/resources/glossary.html) and the [API reference documentation](/kedro) for additional information.


## Why does Kedro exist?

Kedro is built upon our collective best-practice (and mistakes) trying to deliver real-world ML applications that have vast amounts of raw unvetted data. We developed Kedro to achieve the following:
 - To address the main shortcomings of Jupyter notebooks, one-off scripts, and glue-code because there is a focus on
  creating **maintainable data science code**
 - To enhance **team collaboration** when different team members have varied exposure to software engineering concepts
 - To increase efficiency, because applied concepts like modularity and separation of concerns inspire the creation of
  **reusable analytics code**


## The humans behind Kedro

The [Kedro product team](https://docs.kedro.org/en/stable/faq/faq.html#who-maintains-kedro) and a number of [open source contributors from across the world](https://github.com/kedro-org/kedro/releases) maintain Kedro.


## Can I contribute?

Yes! Want to help build Kedro? Check out our [guide to contributing to Kedro](https://github.com/kedro-org/kedro/blob/main/CONTRIBUTING.md).


## Where can I learn more?

There is a growing community around Kedro. Have a look at the [Kedro FAQs](https://docs.kedro.org/en/stable/faq/faq.html#how-can-i-find-out-more-about-kedro) to find projects using Kedro and links to articles, podcasts and talks.


## Who likes Kedro?

There are Kedro users across the world, who work at start-ups, major enterprises and academic institutions like [Absa](https://www.absa.co.za/),
[Acensi](https://acensi.eu/page/home),
[Advanced Programming Solutions SL](https://www.linkedin.com/feed/update/urn:li:activity:6863494681372721152/),
[AI Singapore](https://makerspace.aisingapore.org/2020/08/leveraging-kedro-in-100e/),
[AMAI GmbH](https://www.am.ai/),
[Augment Partners](https://www.linkedin.com/posts/augment-partners_kedro-cheat-sheet-by-augment-activity-6858927624631283712-Ivqk),
[AXA UK](https://www.axa.co.uk/),
[Belfius](https://www.linkedin.com/posts/vangansen_mlops-machinelearning-kedro-activity-6772379995953238016-JUmo),
[Beamery](https://medium.com/hacking-talent/production-code-for-data-science-and-our-experience-with-kedro-60bb69934d1f),
[Caterpillar](https://www.caterpillar.com/),
[CRIM](https://www.crim.ca/en/),
[Dendra Systems](https://www.dendra.io/),
[Element AI](https://www.elementai.com/),
[GetInData](https://getindata.com/blog/running-machine-learning-pipelines-kedro-kubeflow-airflow),
[GMO](https://recruit.gmo.jp/engineer/jisedai/engineer/jisedai/engineer/jisedai/engineer/jisedai/engineer/jisedai/blog/kedro_and_mlflow_tracking/),
[Indicium](https://medium.com/indiciumtech/how-to-build-models-as-products-using-mlops-part-2-machine-learning-pipelines-with-kedro-10337c48de92),
[Imperial College London](https://github.com/dssg/barefoot-winnie-public),
[ING](https://www.ing.com),
[Jungle Scout](https://junglescouteng.medium.com/jungle-scout-case-study-kedro-airflow-and-mlflow-use-on-production-code-150d7231d42e),
[Helvetas](https://www.linkedin.com/posts/lionel-trebuchon_mlflow-kedro-ml-ugcPost-6747074322164154368-umKw),
[Leapfrog](https://www.lftechnology.com/blog/ai-pipeline-kedro/),
[McKinsey & Company](https://www.mckinsey.com/alumni/news-and-insights/global-news/firm-news/kedro-from-proprietary-to-open-source),
[Mercado Libre Argentina](https://www.mercadolibre.com.ar),
[Modec](https://www.modec.com/),
[Mosaic Data Science](https://www.youtube.com/watch?v=fCWGevB366g),
[NaranjaX](https://www.youtube.com/watch?v=_0kMmRfltEQ),
[NASA](https://github.com/nasa/ML-airport-taxi-out),
[NHS AI Lab](https://nhsx.github.io/skunkworks/synthetic-data-pipeline),
[Open Data Science LatAm](https://www.odesla.org/),
[Prediqt](https://prediqt.co/),
[QuantumBlack](https://medium.com/quantumblack/introducing-kedro-the-open-source-library-for-production-ready-machine-learning-code-d1c6d26ce2cf),
[ReSpo.Vision](https://neptune.ai/customers/respo-vision),
[Retrieva](https://tech.retrieva.jp/entry/2020/07/28/181414),
[Roche](https://www.roche.com/),
[Sber](https://www.linkedin.com/posts/seleznev-artem_welcome-to-kedros-documentation-kedro-activity-6767523561109385216-woTt),
[Société Générale](https://www.societegenerale.com/en),
[Telkomsel](https://medium.com/life-at-telkomsel/how-we-build-a-production-grade-data-pipeline-7004e56c8c98),
[Universidad Rey Juan Carlos](https://github.com/vchaparro/MasterThesis-wind-power-forecasting/blob/master/thesis.pdf),
[UrbanLogiq](https://urbanlogiq.com/),
[Wildlife Studios](https://wildlifestudios.com),
[WovenLight](https://www.wovenlight.com/) and
[XP](https://youtu.be/wgnGOVNkXqU?t=2210).

Kedro won [Best Technical Tool or Framework for AI](https://awards.ai/the-awards/previous-awards/the-4th-ai-award-winners/) in the 2019 Awards AI competition and a merit award for the 2020 [UK Technical Communication Awards](https://uktcawards.com/announcing-the-award-winners-for-2020/). It is listed on the 2020 [ThoughtWorks Technology Radar](https://www.thoughtworks.com/radar/languages-and-frameworks/kedro) and the 2020 [Data & AI Landscape](https://mattturck.com/data2020/). Kedro has received an [honorable mention in the User Experience category in Fast Company’s 2022 Innovation by Design Awards](https://www.fastcompany.com/90772252/user-experience-innovation-by-design-2022).


## How can I cite Kedro?

If you're an academic, Kedro can also help you, for example, as a tool to solve the problem of reproducible research. Use the "Cite this repository" button on [our repository](https://github.com/kedro-org/kedro) to generate a citation from the [CITATION.cff file](https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files).


%prep
%autosetup -n kedro-0.18.7

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-kedro -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.18.7-1
- Package Spec generated