diff options
author | CoprDistGit <infra@openeuler.org> | 2023-04-11 18:47:16 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-04-11 18:47:16 +0000 |
commit | 0b9632845046d9995fab4f23f163a1c4da811b4b (patch) | |
tree | a048bea8db13ec603586c5d7825430b29dad3799 | |
parent | 87862928475ac13f52a175ec09dd37ddc3a4faf6 (diff) |
automatic import of python-keras-metrics
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-keras-metrics.spec | 349 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 351 insertions, 0 deletions
@@ -0,0 +1 @@ +/keras-metrics-1.1.0.tar.gz diff --git a/python-keras-metrics.spec b/python-keras-metrics.spec new file mode 100644 index 0000000..3e4850c --- /dev/null +++ b/python-keras-metrics.spec @@ -0,0 +1,349 @@ +%global _empty_manifest_terminate_build 0 +Name: python-keras-metrics +Version: 1.1.0 +Release: 1 +Summary: Metrics for Keras model evaluation +License: MIT License +URL: https://github.com/netrack/keras-metrics +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/3c/39/46e985d0718d692384c5feb006bb2dcb5846ce60b1ec94db323747b53c90/keras-metrics-1.1.0.tar.gz +BuildArch: noarch + +Requires: python3-Keras + +%description +# Keras Metrics + +[![Build Status][BuildStatus]](https://travis-ci.org/netrack/keras-metrics) + +This package provides metrics for evaluation of Keras classification models. +The metrics are safe to use for batch-based model evaluation. + +## Installation + +To install the package from the PyPi repository you can execute the following +command: +```sh +pip install keras-metrics +``` + +## Usage + +The usage of the package is simple: +```py +import keras +import keras_metrics as km + +model = models.Sequential() +model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2)) +model.add(keras.layers.Dense(1, activation="softmax")) + +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[km.binary_precision(), km.binary_recall()]) +``` + +Similar configuration for multi-label binary crossentropy: +```py +import keras +import keras_metrics as km + +model = models.Sequential() +model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2)) +model.add(keras.layers.Dense(2, activation="softmax")) + +# Calculate precision for the second label. +precision = km.binary_precision(label=1) + +# Calculate recall for the first label. +recall = km.binary_recall(label=0) + +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[precision, recall]) +``` + +Keras metrics package also supports metrics for categorical crossentropy and +sparse categorical crossentropy: +```py +import keras_metrics as km + +c_precision = km.categorical_precision() +sc_precision = km.sparse_categorical_precision() + +# ... +``` + +## Tensorflow Keras + +Tensorflow library provides the ```keras``` package as parts of its API, in +order to use ```keras_metrics``` with Tensorflow Keras, you are advised to +perform model training with initialized global variables: +```py +import numpy as np +import keras_metrics as km +import tensorflow as tf +import tensorflow.keras as keras + +model = keras.Sequential() +model.add(keras.layers.Dense(1, activation="softmax")) +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[km.binary_true_positive()]) + +x = np.array([[0], [1], [0], [1]]) +y = np.array([1, 0, 1, 0] + +# Wrap model.fit into the session with global +# variables initialization. +with tf.Session() as s: + s.run(tf.global_variables_initializer()) + model.fit(x=x, y=y) +``` + +[BuildStatus]: https://travis-ci.org/netrack/keras-metrics.svg?branch=master + + + + +%package -n python3-keras-metrics +Summary: Metrics for Keras model evaluation +Provides: python-keras-metrics +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-keras-metrics +# Keras Metrics + +[![Build Status][BuildStatus]](https://travis-ci.org/netrack/keras-metrics) + +This package provides metrics for evaluation of Keras classification models. +The metrics are safe to use for batch-based model evaluation. + +## Installation + +To install the package from the PyPi repository you can execute the following +command: +```sh +pip install keras-metrics +``` + +## Usage + +The usage of the package is simple: +```py +import keras +import keras_metrics as km + +model = models.Sequential() +model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2)) +model.add(keras.layers.Dense(1, activation="softmax")) + +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[km.binary_precision(), km.binary_recall()]) +``` + +Similar configuration for multi-label binary crossentropy: +```py +import keras +import keras_metrics as km + +model = models.Sequential() +model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2)) +model.add(keras.layers.Dense(2, activation="softmax")) + +# Calculate precision for the second label. +precision = km.binary_precision(label=1) + +# Calculate recall for the first label. +recall = km.binary_recall(label=0) + +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[precision, recall]) +``` + +Keras metrics package also supports metrics for categorical crossentropy and +sparse categorical crossentropy: +```py +import keras_metrics as km + +c_precision = km.categorical_precision() +sc_precision = km.sparse_categorical_precision() + +# ... +``` + +## Tensorflow Keras + +Tensorflow library provides the ```keras``` package as parts of its API, in +order to use ```keras_metrics``` with Tensorflow Keras, you are advised to +perform model training with initialized global variables: +```py +import numpy as np +import keras_metrics as km +import tensorflow as tf +import tensorflow.keras as keras + +model = keras.Sequential() +model.add(keras.layers.Dense(1, activation="softmax")) +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[km.binary_true_positive()]) + +x = np.array([[0], [1], [0], [1]]) +y = np.array([1, 0, 1, 0] + +# Wrap model.fit into the session with global +# variables initialization. +with tf.Session() as s: + s.run(tf.global_variables_initializer()) + model.fit(x=x, y=y) +``` + +[BuildStatus]: https://travis-ci.org/netrack/keras-metrics.svg?branch=master + + + + +%package help +Summary: Development documents and examples for keras-metrics +Provides: python3-keras-metrics-doc +%description help +# Keras Metrics + +[![Build Status][BuildStatus]](https://travis-ci.org/netrack/keras-metrics) + +This package provides metrics for evaluation of Keras classification models. +The metrics are safe to use for batch-based model evaluation. + +## Installation + +To install the package from the PyPi repository you can execute the following +command: +```sh +pip install keras-metrics +``` + +## Usage + +The usage of the package is simple: +```py +import keras +import keras_metrics as km + +model = models.Sequential() +model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2)) +model.add(keras.layers.Dense(1, activation="softmax")) + +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[km.binary_precision(), km.binary_recall()]) +``` + +Similar configuration for multi-label binary crossentropy: +```py +import keras +import keras_metrics as km + +model = models.Sequential() +model.add(keras.layers.Dense(1, activation="sigmoid", input_dim=2)) +model.add(keras.layers.Dense(2, activation="softmax")) + +# Calculate precision for the second label. +precision = km.binary_precision(label=1) + +# Calculate recall for the first label. +recall = km.binary_recall(label=0) + +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[precision, recall]) +``` + +Keras metrics package also supports metrics for categorical crossentropy and +sparse categorical crossentropy: +```py +import keras_metrics as km + +c_precision = km.categorical_precision() +sc_precision = km.sparse_categorical_precision() + +# ... +``` + +## Tensorflow Keras + +Tensorflow library provides the ```keras``` package as parts of its API, in +order to use ```keras_metrics``` with Tensorflow Keras, you are advised to +perform model training with initialized global variables: +```py +import numpy as np +import keras_metrics as km +import tensorflow as tf +import tensorflow.keras as keras + +model = keras.Sequential() +model.add(keras.layers.Dense(1, activation="softmax")) +model.compile(optimizer="sgd", + loss="binary_crossentropy", + metrics=[km.binary_true_positive()]) + +x = np.array([[0], [1], [0], [1]]) +y = np.array([1, 0, 1, 0] + +# Wrap model.fit into the session with global +# variables initialization. +with tf.Session() as s: + s.run(tf.global_variables_initializer()) + model.fit(x=x, y=y) +``` + +[BuildStatus]: https://travis-ci.org/netrack/keras-metrics.svg?branch=master + + + + +%prep +%autosetup -n keras-metrics-1.1.0 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-keras-metrics -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 1.1.0-1 +- Package Spec generated @@ -0,0 +1 @@ +4eef07ad1a57a62f0577fbc030f7b8c6 keras-metrics-1.1.0.tar.gz |