diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-31 03:26:00 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-31 03:26:00 +0000 |
commit | 592288e5b69de790834ec0776600a6a088b74b48 (patch) | |
tree | f03b4516920822754445ff0dc56b41abb2352f7b | |
parent | aabeb5addd53e0b6d3696670e9c460d3291866bb (diff) |
automatic import of python-keras-models
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-keras-models.spec | 468 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 470 insertions, 0 deletions
@@ -0,0 +1 @@ +/keras-models-0.0.7.tar.gz diff --git a/python-keras-models.spec b/python-keras-models.spec new file mode 100644 index 0000000..6ac2de1 --- /dev/null +++ b/python-keras-models.spec @@ -0,0 +1,468 @@ +%global _empty_manifest_terminate_build 0 +Name: python-keras-models +Version: 0.0.7 +Release: 1 +Summary: Keras Models Hub +License: Apache License 2.0 +URL: https://github.com/Marcnuth/Keras-Models +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/d4/a5/4d1dd4a1d31c56a28e32441404c01694faa13d384f7d679987eb16a0456e/keras-models-0.0.7.tar.gz +BuildArch: noarch + +Requires: python3-keras +Requires: python3-numpy +Requires: python3-spacy +Requires: python3-Pillow +Requires: python3-opencv-python +Requires: python3-pathlib + +%description +# Keras Models Hub + + + +This repo aims at providing both **reusable** Keras Models and **pre-trained** models, which could easily integrated into your projects. + +## Install + +```shell +pip install keras-models +``` + +If you will using the NLP models, you need run one more command: +```shell +python -m spacy download xx_ent_wiki_sm +``` + +## Usage Guide + +### Import + +``` +import kearasmodels +``` + + +### Examples + +#### Reusable Models + +__LinearModel__ + +__DNN__ + +__CNN__ + +```python +from keras_models.models import CNN + +# fake data +X = np.random.normal(0, 1.0, size=500 * 100 * 100 * 3).reshape(500, 100, 100, 3) +w1 = np.random.normal(0, 1.0, size=100) +w2 = np.random.normal(0, 1.0, size=3) +Y = np.dot(np.dot(np.dot(X, w2), w1), w1) + np.random.randint(1) + +# initialize & train model +model = CNN(input_shape=X.shape[1:], filters=[32, 64], kernel_size=(2, 2), pool_size=(3, 3), padding='same', r_dropout=0.25, num_classes=1) +model.compile(optimizer='adam', loss=mean_squared_error, metrics=['mae', 'mse']) +model.summary() + +model.fit(X, Y, batch_size=16, epochs=100, validation_split=0.1) +``` + +__SkipGram__ + +__WideDeep__ + +#### Pre-trained Models + +__VGG16_Places365__ +> This model is forked from [GKalliatakis/Keras-VGG16-places365](https://github.com/GKalliatakis/Keras-VGG16-places365) and [CSAILVision/places365](https://github.com/CSAILVision/places365) + +```python +from keras_models.models.pretrained import vgg16_places365 +labels = vgg16_places365.predict(['your_image_file_pathname.jpg', 'another.jpg'], n_top=3) + +# Example Result: labels = [['cafeteria', 'food_court', 'restaurant_patio'], ['beach', 'sand']] +``` + + +## Models + +- LinearModel +- DNN +- WideDeep +- TextCNN +- TextDNN +- SkipGram +- ResNet +- VGG16_Places365 [pre-trained] +- working on more models + +## Citation + +__WideDeep__ + +``` +Cheng H T, Koc L, Harmsen J, et al. +Wide & deep learning for recommender systems[C] +Proceedings of the 1st workshop on deep learning for recommender systems. ACM, 2016: 7-10. +``` + +__TextCNN__ + +``` +Kim Y. +Convolutional neural networks for sentence classification[J]. +arXiv preprint arXiv:1408.5882, 2014. +``` + +__SkipGram__ + +``` +Mikolov T, Chen K, Corrado G, et al. +Efficient estimation of word representations in vector space[J]. +arXiv preprint arXiv:1301.3781, 2013. +``` + + +__VGG16_Places365__ +``` +Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. +Places: A 10 million Image Database for Scene Recognition +IEEE Transactions on Pattern Analysis and Machine Intelligence +``` + +__ResNet__ +``` +He K, Zhang X, Ren S, et al. +Deep residual learning for image recognition[C] +Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. + +``` + +## Contribution + +Please submit PR if you want to contribute, or submit issues for new model requirements. + + + + + +%package -n python3-keras-models +Summary: Keras Models Hub +Provides: python-keras-models +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-keras-models +# Keras Models Hub + + + +This repo aims at providing both **reusable** Keras Models and **pre-trained** models, which could easily integrated into your projects. + +## Install + +```shell +pip install keras-models +``` + +If you will using the NLP models, you need run one more command: +```shell +python -m spacy download xx_ent_wiki_sm +``` + +## Usage Guide + +### Import + +``` +import kearasmodels +``` + + +### Examples + +#### Reusable Models + +__LinearModel__ + +__DNN__ + +__CNN__ + +```python +from keras_models.models import CNN + +# fake data +X = np.random.normal(0, 1.0, size=500 * 100 * 100 * 3).reshape(500, 100, 100, 3) +w1 = np.random.normal(0, 1.0, size=100) +w2 = np.random.normal(0, 1.0, size=3) +Y = np.dot(np.dot(np.dot(X, w2), w1), w1) + np.random.randint(1) + +# initialize & train model +model = CNN(input_shape=X.shape[1:], filters=[32, 64], kernel_size=(2, 2), pool_size=(3, 3), padding='same', r_dropout=0.25, num_classes=1) +model.compile(optimizer='adam', loss=mean_squared_error, metrics=['mae', 'mse']) +model.summary() + +model.fit(X, Y, batch_size=16, epochs=100, validation_split=0.1) +``` + +__SkipGram__ + +__WideDeep__ + +#### Pre-trained Models + +__VGG16_Places365__ +> This model is forked from [GKalliatakis/Keras-VGG16-places365](https://github.com/GKalliatakis/Keras-VGG16-places365) and [CSAILVision/places365](https://github.com/CSAILVision/places365) + +```python +from keras_models.models.pretrained import vgg16_places365 +labels = vgg16_places365.predict(['your_image_file_pathname.jpg', 'another.jpg'], n_top=3) + +# Example Result: labels = [['cafeteria', 'food_court', 'restaurant_patio'], ['beach', 'sand']] +``` + + +## Models + +- LinearModel +- DNN +- WideDeep +- TextCNN +- TextDNN +- SkipGram +- ResNet +- VGG16_Places365 [pre-trained] +- working on more models + +## Citation + +__WideDeep__ + +``` +Cheng H T, Koc L, Harmsen J, et al. +Wide & deep learning for recommender systems[C] +Proceedings of the 1st workshop on deep learning for recommender systems. ACM, 2016: 7-10. +``` + +__TextCNN__ + +``` +Kim Y. +Convolutional neural networks for sentence classification[J]. +arXiv preprint arXiv:1408.5882, 2014. +``` + +__SkipGram__ + +``` +Mikolov T, Chen K, Corrado G, et al. +Efficient estimation of word representations in vector space[J]. +arXiv preprint arXiv:1301.3781, 2013. +``` + + +__VGG16_Places365__ +``` +Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. +Places: A 10 million Image Database for Scene Recognition +IEEE Transactions on Pattern Analysis and Machine Intelligence +``` + +__ResNet__ +``` +He K, Zhang X, Ren S, et al. +Deep residual learning for image recognition[C] +Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. + +``` + +## Contribution + +Please submit PR if you want to contribute, or submit issues for new model requirements. + + + + + +%package help +Summary: Development documents and examples for keras-models +Provides: python3-keras-models-doc +%description help +# Keras Models Hub + + + +This repo aims at providing both **reusable** Keras Models and **pre-trained** models, which could easily integrated into your projects. + +## Install + +```shell +pip install keras-models +``` + +If you will using the NLP models, you need run one more command: +```shell +python -m spacy download xx_ent_wiki_sm +``` + +## Usage Guide + +### Import + +``` +import kearasmodels +``` + + +### Examples + +#### Reusable Models + +__LinearModel__ + +__DNN__ + +__CNN__ + +```python +from keras_models.models import CNN + +# fake data +X = np.random.normal(0, 1.0, size=500 * 100 * 100 * 3).reshape(500, 100, 100, 3) +w1 = np.random.normal(0, 1.0, size=100) +w2 = np.random.normal(0, 1.0, size=3) +Y = np.dot(np.dot(np.dot(X, w2), w1), w1) + np.random.randint(1) + +# initialize & train model +model = CNN(input_shape=X.shape[1:], filters=[32, 64], kernel_size=(2, 2), pool_size=(3, 3), padding='same', r_dropout=0.25, num_classes=1) +model.compile(optimizer='adam', loss=mean_squared_error, metrics=['mae', 'mse']) +model.summary() + +model.fit(X, Y, batch_size=16, epochs=100, validation_split=0.1) +``` + +__SkipGram__ + +__WideDeep__ + +#### Pre-trained Models + +__VGG16_Places365__ +> This model is forked from [GKalliatakis/Keras-VGG16-places365](https://github.com/GKalliatakis/Keras-VGG16-places365) and [CSAILVision/places365](https://github.com/CSAILVision/places365) + +```python +from keras_models.models.pretrained import vgg16_places365 +labels = vgg16_places365.predict(['your_image_file_pathname.jpg', 'another.jpg'], n_top=3) + +# Example Result: labels = [['cafeteria', 'food_court', 'restaurant_patio'], ['beach', 'sand']] +``` + + +## Models + +- LinearModel +- DNN +- WideDeep +- TextCNN +- TextDNN +- SkipGram +- ResNet +- VGG16_Places365 [pre-trained] +- working on more models + +## Citation + +__WideDeep__ + +``` +Cheng H T, Koc L, Harmsen J, et al. +Wide & deep learning for recommender systems[C] +Proceedings of the 1st workshop on deep learning for recommender systems. ACM, 2016: 7-10. +``` + +__TextCNN__ + +``` +Kim Y. +Convolutional neural networks for sentence classification[J]. +arXiv preprint arXiv:1408.5882, 2014. +``` + +__SkipGram__ + +``` +Mikolov T, Chen K, Corrado G, et al. +Efficient estimation of word representations in vector space[J]. +arXiv preprint arXiv:1301.3781, 2013. +``` + + +__VGG16_Places365__ +``` +Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., & Torralba, A. +Places: A 10 million Image Database for Scene Recognition +IEEE Transactions on Pattern Analysis and Machine Intelligence +``` + +__ResNet__ +``` +He K, Zhang X, Ren S, et al. +Deep residual learning for image recognition[C] +Proceedings of the IEEE conference on computer vision and pattern recognition. 2016: 770-778. + +``` + +## Contribution + +Please submit PR if you want to contribute, or submit issues for new model requirements. + + + + + +%prep +%autosetup -n keras-models-0.0.7 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-keras-models -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 31 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.7-1 +- Package Spec generated @@ -0,0 +1 @@ +86d9269547c8a13a8c668e33c5ec3ca9 keras-models-0.0.7.tar.gz |