diff options
| author | CoprDistGit <infra@openeuler.org> | 2023-04-10 10:50:02 +0000 |
|---|---|---|
| committer | CoprDistGit <infra@openeuler.org> | 2023-04-10 10:50:02 +0000 |
| commit | f595396f4efad24707be840c873bf99c04ff3e23 (patch) | |
| tree | 1dbfb0f29f99fd945eb519184068f650a61fca81 | |
| parent | 2f326e5d69607300aa367d08f6b035315f558e30 (diff) | |
automatic import of python-kfp
| -rw-r--r-- | .gitignore | 1 | ||||
| -rw-r--r-- | python-kfp.spec | 261 | ||||
| -rw-r--r-- | sources | 1 |
3 files changed, 263 insertions, 0 deletions
@@ -0,0 +1 @@ +/kfp-1.8.20.tar.gz diff --git a/python-kfp.spec b/python-kfp.spec new file mode 100644 index 0000000..77e287f --- /dev/null +++ b/python-kfp.spec @@ -0,0 +1,261 @@ +%global _empty_manifest_terminate_build 0 +Name: python-kfp +Version: 1.8.20 +Release: 1 +Summary: KubeFlow Pipelines SDK +License: Apache Software License +URL: https://github.com/kubeflow/pipelines +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/39/4f/a92391bd04ef76f7476b05366411e4c36d83eaa3fca18f1b643c7d5b75a3/kfp-1.8.20.tar.gz +BuildArch: noarch + + +%description +# `kfp`: Kubeflow Pipelines SDK + +[](https://badge.fury.io/py/kfp) +[](https://pypi.org/project/kfp/) +[](https://pypi.org/project/kfp/) +[](https://kubeflow-pipelines.readthedocs.io/en/stable/?badge=latest) +[](https://github.com/google/yapf) + +Kubeflow Pipelines is a platform for building and deploying portable, scalable machine learning workflows based on Docker containers within the [Kubeflow](https://www.kubeflow.org/) project. + +Use Kubeflow Pipelines to compose a multi-step workflow ([pipeline](https://www.kubeflow.org/docs/components/pipelines/concepts/pipeline/)) as a [graph](https://www.kubeflow.org/docs/components/pipelines/concepts/graph/) of containerized [tasks](https://www.kubeflow.org/docs/components/pipelines/concepts/step/) using [Python code](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/#getting-started-with-python-function-based-components) and/or [YAML](https://www.kubeflow.org/docs/components/pipelines/sdk/component-development/#creating-a-component-specification). Then, [run](https://www.kubeflow.org/docs/components/pipelines/concepts/run/) your pipeline with specified pipeline arguments, rerun your pipeline with new arguments or data, [schedule](https://www.kubeflow.org/docs/components/pipelines/concepts/run-trigger/) your pipeline to run on a recurring basis, organize your runs into [experiments](https://www.kubeflow.org/docs/components/pipelines/concepts/experiment/), save machine learning artifacts to compliant [artifact registries](https://www.kubeflow.org/docs/components/pipelines/concepts/metadata/), and visualize it all through the [Kubeflow Dashboard](https://www.kubeflow.org/docs/components/central-dash/overview/). + +## Documentation +* [Kubeflow Pipelines Overview](https://www.kubeflow.org/docs/components/pipelines/introduction/) +* [SDK Overview](https://www.kubeflow.org/docs/components/pipelines/sdk/sdk-overview/) +* [SDK API Documentation](https://kubeflow-pipelines.readthedocs.io/en/stable/) + +## Installation + +To install the latest stable release, run: + +```sh +pip install kfp +``` + +## Getting started + +The following is an example of a simple pipeline with one Python function-based component used in two separate tasks to do basic addition: + +```python +import kfp +from kfp.components import create_component_from_func +import kfp.dsl as dsl + +def add(a: float, b: float) -> float: + '''Calculates sum of two arguments''' + return a + b + + +# create a component using the add function +add_op = create_component_from_func(add) + +# compose your pipeline using the dsl.pipeline decorator +@dsl.pipeline( + name='Addition pipeline', + description='An example pipeline that performs addition calculations.') +def add_pipeline( + a: float=1.0, + b: float=7.0, +): + first_add_task = add_op(a=a, b=4.0) + second_add_task = add_op(a=first_add_task.output, b=b) + +# instantiate a client and submit your pipeline with arguments +client = kfp.Client(host='<my-host-url>') +client.create_run_from_pipeline_func( + add_pipeline, arguments={ + 'a': 7.0, + 'b': 8.0 + }) + +``` + +For more information, refer to [Building Python function-based components](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/). + +%package -n python3-kfp +Summary: KubeFlow Pipelines SDK +Provides: python-kfp +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-kfp +# `kfp`: Kubeflow Pipelines SDK + +[](https://badge.fury.io/py/kfp) +[](https://pypi.org/project/kfp/) +[](https://pypi.org/project/kfp/) +[](https://kubeflow-pipelines.readthedocs.io/en/stable/?badge=latest) +[](https://github.com/google/yapf) + +Kubeflow Pipelines is a platform for building and deploying portable, scalable machine learning workflows based on Docker containers within the [Kubeflow](https://www.kubeflow.org/) project. + +Use Kubeflow Pipelines to compose a multi-step workflow ([pipeline](https://www.kubeflow.org/docs/components/pipelines/concepts/pipeline/)) as a [graph](https://www.kubeflow.org/docs/components/pipelines/concepts/graph/) of containerized [tasks](https://www.kubeflow.org/docs/components/pipelines/concepts/step/) using [Python code](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/#getting-started-with-python-function-based-components) and/or [YAML](https://www.kubeflow.org/docs/components/pipelines/sdk/component-development/#creating-a-component-specification). Then, [run](https://www.kubeflow.org/docs/components/pipelines/concepts/run/) your pipeline with specified pipeline arguments, rerun your pipeline with new arguments or data, [schedule](https://www.kubeflow.org/docs/components/pipelines/concepts/run-trigger/) your pipeline to run on a recurring basis, organize your runs into [experiments](https://www.kubeflow.org/docs/components/pipelines/concepts/experiment/), save machine learning artifacts to compliant [artifact registries](https://www.kubeflow.org/docs/components/pipelines/concepts/metadata/), and visualize it all through the [Kubeflow Dashboard](https://www.kubeflow.org/docs/components/central-dash/overview/). + +## Documentation +* [Kubeflow Pipelines Overview](https://www.kubeflow.org/docs/components/pipelines/introduction/) +* [SDK Overview](https://www.kubeflow.org/docs/components/pipelines/sdk/sdk-overview/) +* [SDK API Documentation](https://kubeflow-pipelines.readthedocs.io/en/stable/) + +## Installation + +To install the latest stable release, run: + +```sh +pip install kfp +``` + +## Getting started + +The following is an example of a simple pipeline with one Python function-based component used in two separate tasks to do basic addition: + +```python +import kfp +from kfp.components import create_component_from_func +import kfp.dsl as dsl + +def add(a: float, b: float) -> float: + '''Calculates sum of two arguments''' + return a + b + + +# create a component using the add function +add_op = create_component_from_func(add) + +# compose your pipeline using the dsl.pipeline decorator +@dsl.pipeline( + name='Addition pipeline', + description='An example pipeline that performs addition calculations.') +def add_pipeline( + a: float=1.0, + b: float=7.0, +): + first_add_task = add_op(a=a, b=4.0) + second_add_task = add_op(a=first_add_task.output, b=b) + +# instantiate a client and submit your pipeline with arguments +client = kfp.Client(host='<my-host-url>') +client.create_run_from_pipeline_func( + add_pipeline, arguments={ + 'a': 7.0, + 'b': 8.0 + }) + +``` + +For more information, refer to [Building Python function-based components](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/). + +%package help +Summary: Development documents and examples for kfp +Provides: python3-kfp-doc +%description help +# `kfp`: Kubeflow Pipelines SDK + +[](https://badge.fury.io/py/kfp) +[](https://pypi.org/project/kfp/) +[](https://pypi.org/project/kfp/) +[](https://kubeflow-pipelines.readthedocs.io/en/stable/?badge=latest) +[](https://github.com/google/yapf) + +Kubeflow Pipelines is a platform for building and deploying portable, scalable machine learning workflows based on Docker containers within the [Kubeflow](https://www.kubeflow.org/) project. + +Use Kubeflow Pipelines to compose a multi-step workflow ([pipeline](https://www.kubeflow.org/docs/components/pipelines/concepts/pipeline/)) as a [graph](https://www.kubeflow.org/docs/components/pipelines/concepts/graph/) of containerized [tasks](https://www.kubeflow.org/docs/components/pipelines/concepts/step/) using [Python code](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/#getting-started-with-python-function-based-components) and/or [YAML](https://www.kubeflow.org/docs/components/pipelines/sdk/component-development/#creating-a-component-specification). Then, [run](https://www.kubeflow.org/docs/components/pipelines/concepts/run/) your pipeline with specified pipeline arguments, rerun your pipeline with new arguments or data, [schedule](https://www.kubeflow.org/docs/components/pipelines/concepts/run-trigger/) your pipeline to run on a recurring basis, organize your runs into [experiments](https://www.kubeflow.org/docs/components/pipelines/concepts/experiment/), save machine learning artifacts to compliant [artifact registries](https://www.kubeflow.org/docs/components/pipelines/concepts/metadata/), and visualize it all through the [Kubeflow Dashboard](https://www.kubeflow.org/docs/components/central-dash/overview/). + +## Documentation +* [Kubeflow Pipelines Overview](https://www.kubeflow.org/docs/components/pipelines/introduction/) +* [SDK Overview](https://www.kubeflow.org/docs/components/pipelines/sdk/sdk-overview/) +* [SDK API Documentation](https://kubeflow-pipelines.readthedocs.io/en/stable/) + +## Installation + +To install the latest stable release, run: + +```sh +pip install kfp +``` + +## Getting started + +The following is an example of a simple pipeline with one Python function-based component used in two separate tasks to do basic addition: + +```python +import kfp +from kfp.components import create_component_from_func +import kfp.dsl as dsl + +def add(a: float, b: float) -> float: + '''Calculates sum of two arguments''' + return a + b + + +# create a component using the add function +add_op = create_component_from_func(add) + +# compose your pipeline using the dsl.pipeline decorator +@dsl.pipeline( + name='Addition pipeline', + description='An example pipeline that performs addition calculations.') +def add_pipeline( + a: float=1.0, + b: float=7.0, +): + first_add_task = add_op(a=a, b=4.0) + second_add_task = add_op(a=first_add_task.output, b=b) + +# instantiate a client and submit your pipeline with arguments +client = kfp.Client(host='<my-host-url>') +client.create_run_from_pipeline_func( + add_pipeline, arguments={ + 'a': 7.0, + 'b': 8.0 + }) + +``` + +For more information, refer to [Building Python function-based components](https://www.kubeflow.org/docs/components/pipelines/sdk/python-function-components/). + +%prep +%autosetup -n kfp-1.8.20 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-kfp -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.20-1 +- Package Spec generated @@ -0,0 +1 @@ +e324e03c314c3f579719c7d933248588 kfp-1.8.20.tar.gz |
