summaryrefslogtreecommitdiff
path: root/python-kgx.spec
blob: 6758d107e87f6547e2fd2d9681323054daeb216e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
%global _empty_manifest_terminate_build 0
Name:		python-kgx
Version:	2.1.0
Release:	1
Summary:	A Python library and set of command line utilities for exchanging Knowledge Graphs (KGs) that conform to or are aligned to the Biolink Model.
License:	BSD
URL:		https://pypi.org/project/kgx/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/0d/6b/983f1ecccbf7efc900b9eb93081bfcb42a774673f0206d1cc5eb59e1a457/kgx-2.1.0.tar.gz
BuildArch:	noarch

Requires:	python3-Click
Requires:	python3-SPARQLWrapper
Requires:	python3-Sphinx
Requires:	python3-bmt
Requires:	python3-cachetools
Requires:	python3-closurizer
Requires:	python3-deprecation
Requires:	python3-docker
Requires:	python3-docutils
Requires:	python3-ijson
Requires:	python3-inflection
Requires:	python3-jsonlines
Requires:	python3-jsonstreams
Requires:	python3-linkml
Requires:	python3-linkml-runtime
Requires:	python3-mypy
Requires:	python3-neo4j
Requires:	python3-networkx
Requires:	python3-ordered-set
Requires:	python3-pandas
Requires:	python3-prefixcommons
Requires:	python3-prologterms
Requires:	python3-pytest
Requires:	python3-dateutil
Requires:	python3-pyyaml
Requires:	python3-rdflib
Requires:	python3-recommonmark
Requires:	python3-shexjsg
Requires:	python3-stringcase
Requires:	python3-terminaltables
Requires:	python3-tox
Requires:	python3-validators

%description
# Knowledge Graph Exchange


[![Python](https://img.shields.io/badge/python-3.9+-blue.svg)]()
![Run tests](https://github.com/biolink/kgx/workflows/Run%20tests/badge.svg)[![Documentation Status](https://readthedocs.org/projects/kgx/badge/?version=latest)](https://kgx.readthedocs.io/en/latest/?badge=latest)
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=alert_status)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=sqale_rating)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![Coverage](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=coverage)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![PyPI](https://img.shields.io/pypi/v/kgx)](https://img.shields.io/pypi/v/kgx)
[![Docker](https://img.shields.io/static/v1?label=Docker&message=biolink/kgx:latest&color=orange&logo=docker)](https://hub.docker.com/r/biolink/kgx)

KGX (Knowledge Graph Exchange) is a Python library and set of command line utilities for exchanging
Knowledge Graphs (KGs) that conform to or are aligned to the [Biolink Model](https://biolink.github.io/biolink-model/).

The core datamodel is a [Property Graph](https://neo4j.com/developer/graph-database/) (PG), represented
internally in Python using a [networkx MultiDiGraph model](https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.MultiDiGraph.edges.html).

KGX allows conversion to and from:

 * RDF serializations (read/write) and SPARQL endpoints (read)
 * Neo4j endpoints (read) or Neo4j dumps (write)
 * CSV/TSV and JSON (see [associated data formats](./data-preparation.md) and [example script to load CSV/TSV to Neo4j](./examples/scripts/load_csv_to_neo4j.py))
 * Reasoner Standard API format
 * OBOGraph JSON format

KGX will also provide validation, to ensure the KGs are conformant to the Biolink Model: making sure nodes are
categorized using Biolink classes, edges are labeled using valid Biolink relationship types, and valid properties are used.

Internal representation is a property graph, specifically a networkx MultiDiGraph.

The structure of this graph is expected to conform to the Biolink Model standard, as specified in the [KGX format specification](specification/kgx-format.md).

In addition to the main code-base, KGX also provides a series of [command line operations](https://kgx.readthedocs.io/en/latest/examples.html#using-kgx-cli).

### Example usage
Validate:
```bash
poetry run kgx validate -i tsv tests/resources/merge/test2_nodes.tsv tests/resources/merge/test2_edges.tsv
```

Merge:
```bash
poetry run kgx merge —merge-config tests/resources/test-merge.yaml 
```

Graph Summary:
```bash
poetry run kgx graph-summary -i tests/resources/graph_nodes.tsv  -o summary.txt
```

Transform:
```bash
poetry run kgx transform —transform-config tests/resources/test-transform-tsv-rdf.yaml
```

### Error Detection and Reporting

Non-redundant JSON-formatted structured error logging is now provided in KGX Transformer, Validator, GraphSummary and MetaKnowledgeGraph operations.  See the various unit tests for the general design pattern (using the Validator as an example here):

```python
from kgx.validator import Validator
from kgx.transformer import Transformer

Validator.set_biolink_model("2.11.0")

# Validator assumes the currently set Biolink Release
validator = Validator()

transformer = Transformer(stream=True)

transformer.transform(
    input_args = {
        "filename": [
            "graph_nodes.tsv",
            "graph_edges.tsv",
        ],
        "format": "tsv",
    },
    output_args={
        "format": "null"
    },
    inspector=validator,
)

# Both the Validator and the Transformer can independently capture errors

# The Validator, from the overall semantics of the graph...
# Here, we just report severe Errors from the Validator (no Warnings)
validator.write_report(open("validation_errors.json", "w"), "Error")

# The Transformer, from the syntax of the input files... 
# Here, we catch *all* Errors and Warnings (by not providing a filter)
transformer.write_report(open("input_errors.json", "w"))
```

The JSON error outputs will look something like this:

```json
{
    "ERROR": {
        "MISSING_EDGE_PROPERTY": {
            "Required edge property 'id' is missing": [
                "A:123->X:1",
                "B:456->Y:2"
            ],
            "Required edge property 'object' is missing": [
                "A:123->X:1"
            ],
            "Required edge property 'predicate' is missing": [
                "A:123->X:1"
            ],
            "Required edge property 'subject' is missing": [
                "A:123->X:1",
                "B:456->Y:2"
            ]
        }
    },
    "WARNING": {
        "DUPLICATE_NODE": {
          "Node 'id' duplicated in input data": [
            "MONDO:0010011",
            "REACT:R-HSA-5635838"
          ]
        }
    }
}

```

This system reduces the significant redundancies of earlier line-oriented KGX  logging text output files, in that graph entities with the same class of error are simply aggregated in lists of names/identifiers at the leaf level of the JSON structure.

The top level JSON tags originate from the `MessageLevel` class and the second level tags from the `ErrorType` class in the [error_detection](kgx/error_detection.py) module, while the third level messages are hard coded as `log_error` method messages in the code.  

It is likely that additional error conditions within KGX can be efficiently captured and reported in the future using this general framework.

## Installation

#### Installing from PyPI

KGX is available on PyPI and can be installed using
[pip](https://pip.pypa.io/en/stable/installing/) as follows,

```bash
pip install kgx
```

To install a particular version of KGX, be sure to specify the version number,

```bash
pip install kgx==0.5.0
```

#### Installing from GitHub

Clone the GitHub repository and then install,

```bash
git clone https://github.com/biolink/kgx
cd kgx
poetry install
```

### Setting up a testing environment for Neo4j

This release of KGX supports graph source and sink transactions with the 4.3 release of Neo4j.

KGX has a suite of tests that rely on Docker containers to run Neo4j specific tests.

To set up the required containers, first install [Docker](https://docs.docker.com/get-docker/)
on your local machine.

Once Docker is up and running, run the following commands:

```bash
docker run -d --rm --name kgx-neo4j-integration-test -p 7474:7474 -p 7687:7687 --env NEO4J_AUTH=neo4j/test neo4j:4.3
```

```bash
docker run -d --rm --name kgx-neo4j-unit-test -p 8484:7474 -p 8888:7687 --env NEO4J_AUTH=neo4j/test neo4j:4.3
```

**Note:** Setting up the Neo4j container is optional. If there is no container set up
then the tests that rely on them are skipped.



%package -n python3-kgx
Summary:	A Python library and set of command line utilities for exchanging Knowledge Graphs (KGs) that conform to or are aligned to the Biolink Model.
Provides:	python-kgx
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-kgx
# Knowledge Graph Exchange


[![Python](https://img.shields.io/badge/python-3.9+-blue.svg)]()
![Run tests](https://github.com/biolink/kgx/workflows/Run%20tests/badge.svg)[![Documentation Status](https://readthedocs.org/projects/kgx/badge/?version=latest)](https://kgx.readthedocs.io/en/latest/?badge=latest)
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=alert_status)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=sqale_rating)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![Coverage](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=coverage)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![PyPI](https://img.shields.io/pypi/v/kgx)](https://img.shields.io/pypi/v/kgx)
[![Docker](https://img.shields.io/static/v1?label=Docker&message=biolink/kgx:latest&color=orange&logo=docker)](https://hub.docker.com/r/biolink/kgx)

KGX (Knowledge Graph Exchange) is a Python library and set of command line utilities for exchanging
Knowledge Graphs (KGs) that conform to or are aligned to the [Biolink Model](https://biolink.github.io/biolink-model/).

The core datamodel is a [Property Graph](https://neo4j.com/developer/graph-database/) (PG), represented
internally in Python using a [networkx MultiDiGraph model](https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.MultiDiGraph.edges.html).

KGX allows conversion to and from:

 * RDF serializations (read/write) and SPARQL endpoints (read)
 * Neo4j endpoints (read) or Neo4j dumps (write)
 * CSV/TSV and JSON (see [associated data formats](./data-preparation.md) and [example script to load CSV/TSV to Neo4j](./examples/scripts/load_csv_to_neo4j.py))
 * Reasoner Standard API format
 * OBOGraph JSON format

KGX will also provide validation, to ensure the KGs are conformant to the Biolink Model: making sure nodes are
categorized using Biolink classes, edges are labeled using valid Biolink relationship types, and valid properties are used.

Internal representation is a property graph, specifically a networkx MultiDiGraph.

The structure of this graph is expected to conform to the Biolink Model standard, as specified in the [KGX format specification](specification/kgx-format.md).

In addition to the main code-base, KGX also provides a series of [command line operations](https://kgx.readthedocs.io/en/latest/examples.html#using-kgx-cli).

### Example usage
Validate:
```bash
poetry run kgx validate -i tsv tests/resources/merge/test2_nodes.tsv tests/resources/merge/test2_edges.tsv
```

Merge:
```bash
poetry run kgx merge —merge-config tests/resources/test-merge.yaml 
```

Graph Summary:
```bash
poetry run kgx graph-summary -i tests/resources/graph_nodes.tsv  -o summary.txt
```

Transform:
```bash
poetry run kgx transform —transform-config tests/resources/test-transform-tsv-rdf.yaml
```

### Error Detection and Reporting

Non-redundant JSON-formatted structured error logging is now provided in KGX Transformer, Validator, GraphSummary and MetaKnowledgeGraph operations.  See the various unit tests for the general design pattern (using the Validator as an example here):

```python
from kgx.validator import Validator
from kgx.transformer import Transformer

Validator.set_biolink_model("2.11.0")

# Validator assumes the currently set Biolink Release
validator = Validator()

transformer = Transformer(stream=True)

transformer.transform(
    input_args = {
        "filename": [
            "graph_nodes.tsv",
            "graph_edges.tsv",
        ],
        "format": "tsv",
    },
    output_args={
        "format": "null"
    },
    inspector=validator,
)

# Both the Validator and the Transformer can independently capture errors

# The Validator, from the overall semantics of the graph...
# Here, we just report severe Errors from the Validator (no Warnings)
validator.write_report(open("validation_errors.json", "w"), "Error")

# The Transformer, from the syntax of the input files... 
# Here, we catch *all* Errors and Warnings (by not providing a filter)
transformer.write_report(open("input_errors.json", "w"))
```

The JSON error outputs will look something like this:

```json
{
    "ERROR": {
        "MISSING_EDGE_PROPERTY": {
            "Required edge property 'id' is missing": [
                "A:123->X:1",
                "B:456->Y:2"
            ],
            "Required edge property 'object' is missing": [
                "A:123->X:1"
            ],
            "Required edge property 'predicate' is missing": [
                "A:123->X:1"
            ],
            "Required edge property 'subject' is missing": [
                "A:123->X:1",
                "B:456->Y:2"
            ]
        }
    },
    "WARNING": {
        "DUPLICATE_NODE": {
          "Node 'id' duplicated in input data": [
            "MONDO:0010011",
            "REACT:R-HSA-5635838"
          ]
        }
    }
}

```

This system reduces the significant redundancies of earlier line-oriented KGX  logging text output files, in that graph entities with the same class of error are simply aggregated in lists of names/identifiers at the leaf level of the JSON structure.

The top level JSON tags originate from the `MessageLevel` class and the second level tags from the `ErrorType` class in the [error_detection](kgx/error_detection.py) module, while the third level messages are hard coded as `log_error` method messages in the code.  

It is likely that additional error conditions within KGX can be efficiently captured and reported in the future using this general framework.

## Installation

#### Installing from PyPI

KGX is available on PyPI and can be installed using
[pip](https://pip.pypa.io/en/stable/installing/) as follows,

```bash
pip install kgx
```

To install a particular version of KGX, be sure to specify the version number,

```bash
pip install kgx==0.5.0
```

#### Installing from GitHub

Clone the GitHub repository and then install,

```bash
git clone https://github.com/biolink/kgx
cd kgx
poetry install
```

### Setting up a testing environment for Neo4j

This release of KGX supports graph source and sink transactions with the 4.3 release of Neo4j.

KGX has a suite of tests that rely on Docker containers to run Neo4j specific tests.

To set up the required containers, first install [Docker](https://docs.docker.com/get-docker/)
on your local machine.

Once Docker is up and running, run the following commands:

```bash
docker run -d --rm --name kgx-neo4j-integration-test -p 7474:7474 -p 7687:7687 --env NEO4J_AUTH=neo4j/test neo4j:4.3
```

```bash
docker run -d --rm --name kgx-neo4j-unit-test -p 8484:7474 -p 8888:7687 --env NEO4J_AUTH=neo4j/test neo4j:4.3
```

**Note:** Setting up the Neo4j container is optional. If there is no container set up
then the tests that rely on them are skipped.



%package help
Summary:	Development documents and examples for kgx
Provides:	python3-kgx-doc
%description help
# Knowledge Graph Exchange


[![Python](https://img.shields.io/badge/python-3.9+-blue.svg)]()
![Run tests](https://github.com/biolink/kgx/workflows/Run%20tests/badge.svg)[![Documentation Status](https://readthedocs.org/projects/kgx/badge/?version=latest)](https://kgx.readthedocs.io/en/latest/?badge=latest)
[![Quality Gate Status](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=alert_status)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![Maintainability Rating](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=sqale_rating)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![Coverage](https://sonarcloud.io/api/project_badges/measure?project=biolink_kgx&metric=coverage)](https://sonarcloud.io/dashboard?id=biolink_kgx)
[![PyPI](https://img.shields.io/pypi/v/kgx)](https://img.shields.io/pypi/v/kgx)
[![Docker](https://img.shields.io/static/v1?label=Docker&message=biolink/kgx:latest&color=orange&logo=docker)](https://hub.docker.com/r/biolink/kgx)

KGX (Knowledge Graph Exchange) is a Python library and set of command line utilities for exchanging
Knowledge Graphs (KGs) that conform to or are aligned to the [Biolink Model](https://biolink.github.io/biolink-model/).

The core datamodel is a [Property Graph](https://neo4j.com/developer/graph-database/) (PG), represented
internally in Python using a [networkx MultiDiGraph model](https://networkx.github.io/documentation/stable/reference/classes/generated/networkx.MultiDiGraph.edges.html).

KGX allows conversion to and from:

 * RDF serializations (read/write) and SPARQL endpoints (read)
 * Neo4j endpoints (read) or Neo4j dumps (write)
 * CSV/TSV and JSON (see [associated data formats](./data-preparation.md) and [example script to load CSV/TSV to Neo4j](./examples/scripts/load_csv_to_neo4j.py))
 * Reasoner Standard API format
 * OBOGraph JSON format

KGX will also provide validation, to ensure the KGs are conformant to the Biolink Model: making sure nodes are
categorized using Biolink classes, edges are labeled using valid Biolink relationship types, and valid properties are used.

Internal representation is a property graph, specifically a networkx MultiDiGraph.

The structure of this graph is expected to conform to the Biolink Model standard, as specified in the [KGX format specification](specification/kgx-format.md).

In addition to the main code-base, KGX also provides a series of [command line operations](https://kgx.readthedocs.io/en/latest/examples.html#using-kgx-cli).

### Example usage
Validate:
```bash
poetry run kgx validate -i tsv tests/resources/merge/test2_nodes.tsv tests/resources/merge/test2_edges.tsv
```

Merge:
```bash
poetry run kgx merge —merge-config tests/resources/test-merge.yaml 
```

Graph Summary:
```bash
poetry run kgx graph-summary -i tests/resources/graph_nodes.tsv  -o summary.txt
```

Transform:
```bash
poetry run kgx transform —transform-config tests/resources/test-transform-tsv-rdf.yaml
```

### Error Detection and Reporting

Non-redundant JSON-formatted structured error logging is now provided in KGX Transformer, Validator, GraphSummary and MetaKnowledgeGraph operations.  See the various unit tests for the general design pattern (using the Validator as an example here):

```python
from kgx.validator import Validator
from kgx.transformer import Transformer

Validator.set_biolink_model("2.11.0")

# Validator assumes the currently set Biolink Release
validator = Validator()

transformer = Transformer(stream=True)

transformer.transform(
    input_args = {
        "filename": [
            "graph_nodes.tsv",
            "graph_edges.tsv",
        ],
        "format": "tsv",
    },
    output_args={
        "format": "null"
    },
    inspector=validator,
)

# Both the Validator and the Transformer can independently capture errors

# The Validator, from the overall semantics of the graph...
# Here, we just report severe Errors from the Validator (no Warnings)
validator.write_report(open("validation_errors.json", "w"), "Error")

# The Transformer, from the syntax of the input files... 
# Here, we catch *all* Errors and Warnings (by not providing a filter)
transformer.write_report(open("input_errors.json", "w"))
```

The JSON error outputs will look something like this:

```json
{
    "ERROR": {
        "MISSING_EDGE_PROPERTY": {
            "Required edge property 'id' is missing": [
                "A:123->X:1",
                "B:456->Y:2"
            ],
            "Required edge property 'object' is missing": [
                "A:123->X:1"
            ],
            "Required edge property 'predicate' is missing": [
                "A:123->X:1"
            ],
            "Required edge property 'subject' is missing": [
                "A:123->X:1",
                "B:456->Y:2"
            ]
        }
    },
    "WARNING": {
        "DUPLICATE_NODE": {
          "Node 'id' duplicated in input data": [
            "MONDO:0010011",
            "REACT:R-HSA-5635838"
          ]
        }
    }
}

```

This system reduces the significant redundancies of earlier line-oriented KGX  logging text output files, in that graph entities with the same class of error are simply aggregated in lists of names/identifiers at the leaf level of the JSON structure.

The top level JSON tags originate from the `MessageLevel` class and the second level tags from the `ErrorType` class in the [error_detection](kgx/error_detection.py) module, while the third level messages are hard coded as `log_error` method messages in the code.  

It is likely that additional error conditions within KGX can be efficiently captured and reported in the future using this general framework.

## Installation

#### Installing from PyPI

KGX is available on PyPI and can be installed using
[pip](https://pip.pypa.io/en/stable/installing/) as follows,

```bash
pip install kgx
```

To install a particular version of KGX, be sure to specify the version number,

```bash
pip install kgx==0.5.0
```

#### Installing from GitHub

Clone the GitHub repository and then install,

```bash
git clone https://github.com/biolink/kgx
cd kgx
poetry install
```

### Setting up a testing environment for Neo4j

This release of KGX supports graph source and sink transactions with the 4.3 release of Neo4j.

KGX has a suite of tests that rely on Docker containers to run Neo4j specific tests.

To set up the required containers, first install [Docker](https://docs.docker.com/get-docker/)
on your local machine.

Once Docker is up and running, run the following commands:

```bash
docker run -d --rm --name kgx-neo4j-integration-test -p 7474:7474 -p 7687:7687 --env NEO4J_AUTH=neo4j/test neo4j:4.3
```

```bash
docker run -d --rm --name kgx-neo4j-unit-test -p 8484:7474 -p 8888:7687 --env NEO4J_AUTH=neo4j/test neo4j:4.3
```

**Note:** Setting up the Neo4j container is optional. If there is no container set up
then the tests that rely on them are skipped.



%prep
%autosetup -n kgx-2.1.0

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-kgx -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 2.1.0-1
- Package Spec generated