summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-kmapper.spec363
-rw-r--r--sources1
3 files changed, 365 insertions, 0 deletions
diff --git a/.gitignore b/.gitignore
index e69de29..74a81e0 100644
--- a/.gitignore
+++ b/.gitignore
@@ -0,0 +1 @@
+/kmapper-2.0.1.tar.gz
diff --git a/python-kmapper.spec b/python-kmapper.spec
new file mode 100644
index 0000000..8b2e416
--- /dev/null
+++ b/python-kmapper.spec
@@ -0,0 +1,363 @@
+%global _empty_manifest_terminate_build 0
+Name: python-kmapper
+Version: 2.0.1
+Release: 1
+Summary: Python implementation of Mapper algorithm for Topological Data Analysis.
+License: MIT
+URL: http://kepler-mapper.scikit-tda.org
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/72/7e/d3ff347d053fd60f13c42522e7264b8bc3003c3e389cf61745274447a0d1/kmapper-2.0.1.tar.gz
+BuildArch: noarch
+
+Requires: python3-scikit-learn
+Requires: python3-numpy
+Requires: python3-scipy
+Requires: python3-Jinja2
+Requires: python3-sktda-docs-config
+Requires: python3-pandas
+Requires: python3-sphinx-gallery
+Requires: python3-networkx
+Requires: python3-matplotlib
+Requires: python3-igraph
+Requires: python3-plotly
+Requires: python3-ipywidgets
+Requires: python3-pytest
+Requires: python3-networkx
+Requires: python3-matplotlib
+Requires: python3-igraph
+Requires: python3-plotly
+Requires: python3-ipywidgets
+
+%description
+[![PyPI version](https://badge.fury.io/py/kmapper.svg)](https://badge.fury.io/py/kmapper)
+[![Downloads](https://pypip.in/download/kmapper/badge.svg)](https://pypi.python.org/pypi/kmapper/)
+[![Build Status](https://travis-ci.org/scikit-tda/kepler-mapper.svg?branch=master)](https://travis-ci.org/scikit-tda/kepler-mapper)
+[![Codecov](https://codecov.io/gh/scikit-tda/kepler-mapper/branch/master/graph/badge.svg)](https://codecov.io/gh/scikit-tda/kepler-mapper)
+[![DOI](https://joss.theoj.org/papers/10.21105/joss.01315/status.svg)](https://doi.org/10.21105/joss.01315)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1002377.svg)](https://doi.org/10.5281/zenodo.1002377)
+
+# KeplerMapper <img align="right" width="40" height="40" src="http://i.imgur.com/axOG6GJ.jpg">
+
+> Nature uses as little as possible of anything. - Johannes Kepler
+
+This is a Python implementation of the TDA Mapper algorithm for visualization of high-dimensional data. For complete documentation, see [https://kepler-mapper.scikit-tda.org](https://kepler-mapper.scikit-tda.org).
+
+KeplerMapper employs approaches based on the Mapper algorithm (Singh et al.) as first described in the paper "Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition".
+
+KeplerMapper can make use of Scikit-Learn API compatible cluster and scaling algorithms.
+
+
+## Install
+
+### Dependencies
+
+KeplerMapper requires:
+
+ - Python (>= 3.6)
+ - NumPy
+ - Scikit-learn
+
+Using the plotly visualizations requires a few extra libraries:
+
+ - Python-Igraph
+ - Plotly
+ - Ipywidgets
+
+Additionally, running some of the examples requires:
+
+ - matplotlib
+ - umap-learn
+
+
+### Installation
+
+Install KeplerMapper with pip:
+
+```
+pip install kmapper
+```
+
+To install from source:
+```
+git clone https://github.com/MLWave/kepler-mapper
+cd kepler-mapper
+pip install -e .
+```
+
+## Usage
+
+KeplerMapper adopts the scikit-learn API as much as possible, so it should feel very familiar to anyone who has used these libraries.
+
+### Python code
+```python
+# Import the class
+import kmapper as km
+
+# Some sample data
+from sklearn import datasets
+data, labels = datasets.make_circles(n_samples=5000, noise=0.03, factor=0.3)
+
+# Initialize
+mapper = km.KeplerMapper(verbose=1)
+
+# Fit to and transform the data
+projected_data = mapper.fit_transform(data, projection=[0,1]) # X-Y axis
+
+# Create dictionary called 'graph' with nodes, edges and meta-information
+graph = mapper.map(projected_data, data, cover=km.Cover(n_cubes=10))
+
+# Visualize it
+mapper.visualize(graph, path_html="make_circles_keplermapper_output.html",
+ title="make_circles(n_samples=5000, noise=0.03, factor=0.3)")
+```
+
+## Disclaimer
+
+Standard MIT disclaimer applies, see `DISCLAIMER.md` for full text. Development status is Alpha.
+
+## How to cite
+
+To credit KeplerMapper in your work: https://kepler-mapper.scikit-tda.org/en/latest/#citations
+
+
+
+
+%package -n python3-kmapper
+Summary: Python implementation of Mapper algorithm for Topological Data Analysis.
+Provides: python-kmapper
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-kmapper
+[![PyPI version](https://badge.fury.io/py/kmapper.svg)](https://badge.fury.io/py/kmapper)
+[![Downloads](https://pypip.in/download/kmapper/badge.svg)](https://pypi.python.org/pypi/kmapper/)
+[![Build Status](https://travis-ci.org/scikit-tda/kepler-mapper.svg?branch=master)](https://travis-ci.org/scikit-tda/kepler-mapper)
+[![Codecov](https://codecov.io/gh/scikit-tda/kepler-mapper/branch/master/graph/badge.svg)](https://codecov.io/gh/scikit-tda/kepler-mapper)
+[![DOI](https://joss.theoj.org/papers/10.21105/joss.01315/status.svg)](https://doi.org/10.21105/joss.01315)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1002377.svg)](https://doi.org/10.5281/zenodo.1002377)
+
+# KeplerMapper <img align="right" width="40" height="40" src="http://i.imgur.com/axOG6GJ.jpg">
+
+> Nature uses as little as possible of anything. - Johannes Kepler
+
+This is a Python implementation of the TDA Mapper algorithm for visualization of high-dimensional data. For complete documentation, see [https://kepler-mapper.scikit-tda.org](https://kepler-mapper.scikit-tda.org).
+
+KeplerMapper employs approaches based on the Mapper algorithm (Singh et al.) as first described in the paper "Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition".
+
+KeplerMapper can make use of Scikit-Learn API compatible cluster and scaling algorithms.
+
+
+## Install
+
+### Dependencies
+
+KeplerMapper requires:
+
+ - Python (>= 3.6)
+ - NumPy
+ - Scikit-learn
+
+Using the plotly visualizations requires a few extra libraries:
+
+ - Python-Igraph
+ - Plotly
+ - Ipywidgets
+
+Additionally, running some of the examples requires:
+
+ - matplotlib
+ - umap-learn
+
+
+### Installation
+
+Install KeplerMapper with pip:
+
+```
+pip install kmapper
+```
+
+To install from source:
+```
+git clone https://github.com/MLWave/kepler-mapper
+cd kepler-mapper
+pip install -e .
+```
+
+## Usage
+
+KeplerMapper adopts the scikit-learn API as much as possible, so it should feel very familiar to anyone who has used these libraries.
+
+### Python code
+```python
+# Import the class
+import kmapper as km
+
+# Some sample data
+from sklearn import datasets
+data, labels = datasets.make_circles(n_samples=5000, noise=0.03, factor=0.3)
+
+# Initialize
+mapper = km.KeplerMapper(verbose=1)
+
+# Fit to and transform the data
+projected_data = mapper.fit_transform(data, projection=[0,1]) # X-Y axis
+
+# Create dictionary called 'graph' with nodes, edges and meta-information
+graph = mapper.map(projected_data, data, cover=km.Cover(n_cubes=10))
+
+# Visualize it
+mapper.visualize(graph, path_html="make_circles_keplermapper_output.html",
+ title="make_circles(n_samples=5000, noise=0.03, factor=0.3)")
+```
+
+## Disclaimer
+
+Standard MIT disclaimer applies, see `DISCLAIMER.md` for full text. Development status is Alpha.
+
+## How to cite
+
+To credit KeplerMapper in your work: https://kepler-mapper.scikit-tda.org/en/latest/#citations
+
+
+
+
+%package help
+Summary: Development documents and examples for kmapper
+Provides: python3-kmapper-doc
+%description help
+[![PyPI version](https://badge.fury.io/py/kmapper.svg)](https://badge.fury.io/py/kmapper)
+[![Downloads](https://pypip.in/download/kmapper/badge.svg)](https://pypi.python.org/pypi/kmapper/)
+[![Build Status](https://travis-ci.org/scikit-tda/kepler-mapper.svg?branch=master)](https://travis-ci.org/scikit-tda/kepler-mapper)
+[![Codecov](https://codecov.io/gh/scikit-tda/kepler-mapper/branch/master/graph/badge.svg)](https://codecov.io/gh/scikit-tda/kepler-mapper)
+[![DOI](https://joss.theoj.org/papers/10.21105/joss.01315/status.svg)](https://doi.org/10.21105/joss.01315)
+[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.1002377.svg)](https://doi.org/10.5281/zenodo.1002377)
+
+# KeplerMapper <img align="right" width="40" height="40" src="http://i.imgur.com/axOG6GJ.jpg">
+
+> Nature uses as little as possible of anything. - Johannes Kepler
+
+This is a Python implementation of the TDA Mapper algorithm for visualization of high-dimensional data. For complete documentation, see [https://kepler-mapper.scikit-tda.org](https://kepler-mapper.scikit-tda.org).
+
+KeplerMapper employs approaches based on the Mapper algorithm (Singh et al.) as first described in the paper "Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition".
+
+KeplerMapper can make use of Scikit-Learn API compatible cluster and scaling algorithms.
+
+
+## Install
+
+### Dependencies
+
+KeplerMapper requires:
+
+ - Python (>= 3.6)
+ - NumPy
+ - Scikit-learn
+
+Using the plotly visualizations requires a few extra libraries:
+
+ - Python-Igraph
+ - Plotly
+ - Ipywidgets
+
+Additionally, running some of the examples requires:
+
+ - matplotlib
+ - umap-learn
+
+
+### Installation
+
+Install KeplerMapper with pip:
+
+```
+pip install kmapper
+```
+
+To install from source:
+```
+git clone https://github.com/MLWave/kepler-mapper
+cd kepler-mapper
+pip install -e .
+```
+
+## Usage
+
+KeplerMapper adopts the scikit-learn API as much as possible, so it should feel very familiar to anyone who has used these libraries.
+
+### Python code
+```python
+# Import the class
+import kmapper as km
+
+# Some sample data
+from sklearn import datasets
+data, labels = datasets.make_circles(n_samples=5000, noise=0.03, factor=0.3)
+
+# Initialize
+mapper = km.KeplerMapper(verbose=1)
+
+# Fit to and transform the data
+projected_data = mapper.fit_transform(data, projection=[0,1]) # X-Y axis
+
+# Create dictionary called 'graph' with nodes, edges and meta-information
+graph = mapper.map(projected_data, data, cover=km.Cover(n_cubes=10))
+
+# Visualize it
+mapper.visualize(graph, path_html="make_circles_keplermapper_output.html",
+ title="make_circles(n_samples=5000, noise=0.03, factor=0.3)")
+```
+
+## Disclaimer
+
+Standard MIT disclaimer applies, see `DISCLAIMER.md` for full text. Development status is Alpha.
+
+## How to cite
+
+To credit KeplerMapper in your work: https://kepler-mapper.scikit-tda.org/en/latest/#citations
+
+
+
+
+%prep
+%autosetup -n kmapper-2.0.1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-kmapper -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 2.0.1-1
+- Package Spec generated
diff --git a/sources b/sources
new file mode 100644
index 0000000..917cc00
--- /dev/null
+++ b/sources
@@ -0,0 +1 @@
+f8d1054ab9253d2167a95d3e39d4297e kmapper-2.0.1.tar.gz