summaryrefslogtreecommitdiff
path: root/python-kornia.spec
blob: 8e0a0bbbdfbcc683409d923af2454466ab02bb4b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
%global _empty_manifest_terminate_build 0
Name:		python-kornia
Version:	0.6.11
Release:	1
Summary:	Open Source Differentiable Computer Vision Library for PyTorch
License:	Apache-2.0
URL:		https://www.kornia.org
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/c6/3d/5316e028cccd6838419ac4fc0ecefd132e4ea551b8b0058e62510d9ba661/kornia-0.6.11.tar.gz
BuildArch:	noarch

Requires:	python3-packaging
Requires:	python3-torch
Requires:	python3-isort
Requires:	python3-kornia-rs
Requires:	python3-mypy[reports]
Requires:	python3-numpy
Requires:	python3-opencv-python
Requires:	python3-pre-commit
Requires:	python3-pydocstyle
Requires:	python3-pytest
Requires:	python3-pytest-cov
Requires:	python3-scipy
Requires:	python3-furo
Requires:	python3-kornia-moons
Requires:	python3-matplotlib
Requires:	python3-opencv-python
Requires:	python3-PyYAML
Requires:	python3-sphinx
Requires:	python3-sphinx-autodoc-defaultargs
Requires:	python3-sphinx-autodoc-typehints
Requires:	python3-sphinx-copybutton
Requires:	python3-sphinx-design
Requires:	python3-sphinxcontrib-bibtex
Requires:	python3-sphinxcontrib-gtagjs
Requires:	python3-sphinxcontrib-youtube
Requires:	python3-torchvision
Requires:	python3-accelerate

%description
English | [简体中文](README_zh-CN.md)
<!-- prettier-ignore -->
<a href="https://kornia.org">Website</a> •
<a href="https://kornia.readthedocs.io">Docs</a> •
<a href="https://colab.research.google.com/github/kornia/tutorials/blob/master/source/hello_world_tutorial.ipynb">Try it Now</a> •
<a href="https://kornia-tutorials.readthedocs.io">Tutorials</a> •
<a href="https://github.com/kornia/kornia-examples">Examples</a> •
<a href="https://kornia.github.io//kornia-blog">Blog</a> •
<a href="https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-CnydWe5fmvkcktIeRFGCEQ">Community</a>
[![PyPI python](https://img.shields.io/pypi/pyversions/kornia)](https://pypi.org/project/kornia)
[![PyPI version](https://badge.fury.io/py/kornia.svg)](https://pypi.org/project/kornia)
[![Downloads](https://pepy.tech/badge/kornia)](https://pepy.tech/project/kornia)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENCE)
[![Slack](https://img.shields.io/badge/Slack-4A154B?logo=slack&logoColor=white)](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-2AQRi~X9Uu6PLMuUZdvfjA)
[![Twitter](https://img.shields.io/twitter/follow/kornia_foss?style=social)](https://twitter.com/kornia_foss)
[![tests-cpu](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu.yml)
[![tests-cpu-nightly](https://github.com/kornia/kornia/actions/workflows/scheduled_test_nightly.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_nightly.yml)
[![tests-cuda](https://github.com/kornia/kornia/actions/workflows/tests_cuda.yml/badge.svg)](https://github.com/kornia/kornia/actions/workflows/tests_cuda.yml)
[![tests-cpu-float16](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu_half.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu_half.yml)
[![codecov](https://codecov.io/gh/kornia/kornia/branch/master/graph/badge.svg?token=FzCb7e0Bso)](https://codecov.io/gh/kornia/kornia)
[![Documentation Status](https://readthedocs.org/projects/kornia/badge/?version=latest)](https://kornia.readthedocs.io/en/latest/?badge=latest)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/kornia/kornia/master.svg)](https://results.pre-commit.ci/latest/github/kornia/kornia/master)
<a href="https://www.producthunt.com/posts/kornia?utm_source=badge-featured&utm_medium=badge&utm_souce=badge-kornia" target="_blank"><img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=306439&theme=light" alt="Kornia - Computer vision library for deep learning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" /></a>
</p>
</div>
*Kornia* is a differentiable computer vision library for [PyTorch](https://pytorch.org).
It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses *PyTorch* as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions.
<div align="center">
  <img src="https://github.com/kornia/kornia/raw/master/docs/source/_static/img/hakuna_matata.gif" width="75%" height="75%">
</div>
<!--<div align="center">
  <img src="http://drive.google.com/uc?export=view&id=1KNwaanUdY1MynF0EYfyXjDM3ti09tzaq">
</div>-->
## Overview
Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors.
At a granular level, Kornia is a library that consists of the following components:
| **Component**                                                                    | **Description**                                                                                                                       |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| [kornia](https://kornia.readthedocs.io/en/latest/index.html)                     | a Differentiable Computer Vision library, with strong GPU support                                                                     |
| [kornia.augmentation](https://kornia.readthedocs.io/en/latest/augmentation.html) | a module to perform data augmentation in the GPU                                                                                      |
| [kornia.color](https://kornia.readthedocs.io/en/latest/color.html)               | a set of routines to perform color space conversions                                                                                  |
| [kornia.contrib](https://kornia.readthedocs.io/en/latest/contrib.html)           | a compilation of user contrib and experimental operators                                                                              |
| [kornia.enhance](https://kornia.readthedocs.io/en/latest/enhance.html)           | a module to perform normalization and intensity transformation                                                                        |
| [kornia.feature](https://kornia.readthedocs.io/en/latest/feature.html)           | a module to perform feature detection                                                                                                 |
| [kornia.filters](https://kornia.readthedocs.io/en/latest/filters.html)           | a module to perform image filtering and edge detection                                                                                |
| [kornia.geometry](https://kornia.readthedocs.io/en/latest/geometry.html)         | a geometric computer vision library to perform image transformations, 3D linear algebra and conversions using different camera models |
| [kornia.losses](https://kornia.readthedocs.io/en/latest/losses.html)             | a stack of loss functions to solve different vision tasks                                                                             |
| [kornia.morphology](https://kornia.readthedocs.io/en/latest/morphology.html)     | a module to perform morphological operations                                                                                          |
| [kornia.utils](https://kornia.readthedocs.io/en/latest/utils.html)               | image to tensor utilities and metrics for vision problems                                                                             |
## Installation
### From pip:
  ```bash
  pip install kornia
  pip install kornia[x]  # to get the training API !
  ```
<details>
  <summary>Other installation options</summary>
  #### From source:
  ```bash
  python setup.py install
  ```
  #### From source with symbolic links:
  ```bash
  pip install -e .
  ```
  #### From source using pip:
  ```bash
  pip install git+https://github.com/kornia/kornia
  ```
</details>
## Examples
Run our Jupyter notebooks [tutorials](https://kornia-tutorials.readthedocs.io/en/latest/) to learn to use the library.
<div align="center">
  <a href="https://colab.research.google.com/github/kornia/tutorials/blob/master/source/hello_world_tutorial.ipynb" target="_blank">
    <img src="https://raw.githubusercontent.com/kornia/data/main/hello_world_arturito.png" width="75%" height="75%">
  </a>
</div>
- :white_check_mark: [Image Matching](https://kornia.readthedocs.io/en/latest/applications/image_matching.html) Integrated to [Huggingface Spaces](https://huggingface.co/spaces). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Kornia-LoFTR).
- :white_check_mark: [Face Detection](https://kornia.readthedocs.io/en/latest/applications/face_detection.html) Integrated to [Huggingface Spaces](https://huggingface.co/spaces). See [Gradio Web Demo](https://huggingface.co/spaces/frapochetti/blurry-faces).
## Cite
If you are using kornia in your research-related documents, it is recommended that you cite the paper. See more in [CITATION](https://github.com/kornia/kornia/blob/master/CITATION.md).
  ```bibtex
  @inproceedings{eriba2019kornia,
    author    = {E. Riba, D. Mishkin, D. Ponsa, E. Rublee and G. Bradski},
    title     = {Kornia: an Open Source Differentiable Computer Vision Library for PyTorch},
    booktitle = {Winter Conference on Applications of Computer Vision},
    year      = {2020},
    url       = {https://arxiv.org/pdf/1910.02190.pdf}
  }
  ```
## Contributing
We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us. Please, consider reading the [CONTRIBUTING](https://github.com/kornia/kornia/blob/master/CONTRIBUTING.rst) notes. The participation in this open source project is subject to [Code of Conduct](https://github.com/kornia/kornia/blob/master/CODE_OF_CONDUCT.md).
## Community
- **Forums:** discuss implementations, research, etc. [GitHub Forums](https://github.com/kornia/kornia/discussions)
- **GitHub Issues:** bug reports, feature requests, install issues, RFCs, thoughts, etc. [OPEN](https://github.com/kornia/kornia/issues/new/choose)
- **Slack:** Join our workspace to keep in touch with our core contributors and be part of our community. [JOIN HERE](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-2AQRi~X9Uu6PLMuUZdvfjA)
- For general information, please visit our website at www.kornia.org
<a href="https://github.com/Kornia/kornia/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=Kornia/kornia" width="75%" height="75%" />
</a>
Made with [contrib.rocks](https://contrib.rocks).

%package -n python3-kornia
Summary:	Open Source Differentiable Computer Vision Library for PyTorch
Provides:	python-kornia
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-kornia
English | [简体中文](README_zh-CN.md)
<!-- prettier-ignore -->
<a href="https://kornia.org">Website</a> •
<a href="https://kornia.readthedocs.io">Docs</a> •
<a href="https://colab.research.google.com/github/kornia/tutorials/blob/master/source/hello_world_tutorial.ipynb">Try it Now</a> •
<a href="https://kornia-tutorials.readthedocs.io">Tutorials</a> •
<a href="https://github.com/kornia/kornia-examples">Examples</a> •
<a href="https://kornia.github.io//kornia-blog">Blog</a> •
<a href="https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-CnydWe5fmvkcktIeRFGCEQ">Community</a>
[![PyPI python](https://img.shields.io/pypi/pyversions/kornia)](https://pypi.org/project/kornia)
[![PyPI version](https://badge.fury.io/py/kornia.svg)](https://pypi.org/project/kornia)
[![Downloads](https://pepy.tech/badge/kornia)](https://pepy.tech/project/kornia)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENCE)
[![Slack](https://img.shields.io/badge/Slack-4A154B?logo=slack&logoColor=white)](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-2AQRi~X9Uu6PLMuUZdvfjA)
[![Twitter](https://img.shields.io/twitter/follow/kornia_foss?style=social)](https://twitter.com/kornia_foss)
[![tests-cpu](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu.yml)
[![tests-cpu-nightly](https://github.com/kornia/kornia/actions/workflows/scheduled_test_nightly.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_nightly.yml)
[![tests-cuda](https://github.com/kornia/kornia/actions/workflows/tests_cuda.yml/badge.svg)](https://github.com/kornia/kornia/actions/workflows/tests_cuda.yml)
[![tests-cpu-float16](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu_half.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu_half.yml)
[![codecov](https://codecov.io/gh/kornia/kornia/branch/master/graph/badge.svg?token=FzCb7e0Bso)](https://codecov.io/gh/kornia/kornia)
[![Documentation Status](https://readthedocs.org/projects/kornia/badge/?version=latest)](https://kornia.readthedocs.io/en/latest/?badge=latest)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/kornia/kornia/master.svg)](https://results.pre-commit.ci/latest/github/kornia/kornia/master)
<a href="https://www.producthunt.com/posts/kornia?utm_source=badge-featured&utm_medium=badge&utm_souce=badge-kornia" target="_blank"><img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=306439&theme=light" alt="Kornia - Computer vision library for deep learning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" /></a>
</p>
</div>
*Kornia* is a differentiable computer vision library for [PyTorch](https://pytorch.org).
It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses *PyTorch* as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions.
<div align="center">
  <img src="https://github.com/kornia/kornia/raw/master/docs/source/_static/img/hakuna_matata.gif" width="75%" height="75%">
</div>
<!--<div align="center">
  <img src="http://drive.google.com/uc?export=view&id=1KNwaanUdY1MynF0EYfyXjDM3ti09tzaq">
</div>-->
## Overview
Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors.
At a granular level, Kornia is a library that consists of the following components:
| **Component**                                                                    | **Description**                                                                                                                       |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| [kornia](https://kornia.readthedocs.io/en/latest/index.html)                     | a Differentiable Computer Vision library, with strong GPU support                                                                     |
| [kornia.augmentation](https://kornia.readthedocs.io/en/latest/augmentation.html) | a module to perform data augmentation in the GPU                                                                                      |
| [kornia.color](https://kornia.readthedocs.io/en/latest/color.html)               | a set of routines to perform color space conversions                                                                                  |
| [kornia.contrib](https://kornia.readthedocs.io/en/latest/contrib.html)           | a compilation of user contrib and experimental operators                                                                              |
| [kornia.enhance](https://kornia.readthedocs.io/en/latest/enhance.html)           | a module to perform normalization and intensity transformation                                                                        |
| [kornia.feature](https://kornia.readthedocs.io/en/latest/feature.html)           | a module to perform feature detection                                                                                                 |
| [kornia.filters](https://kornia.readthedocs.io/en/latest/filters.html)           | a module to perform image filtering and edge detection                                                                                |
| [kornia.geometry](https://kornia.readthedocs.io/en/latest/geometry.html)         | a geometric computer vision library to perform image transformations, 3D linear algebra and conversions using different camera models |
| [kornia.losses](https://kornia.readthedocs.io/en/latest/losses.html)             | a stack of loss functions to solve different vision tasks                                                                             |
| [kornia.morphology](https://kornia.readthedocs.io/en/latest/morphology.html)     | a module to perform morphological operations                                                                                          |
| [kornia.utils](https://kornia.readthedocs.io/en/latest/utils.html)               | image to tensor utilities and metrics for vision problems                                                                             |
## Installation
### From pip:
  ```bash
  pip install kornia
  pip install kornia[x]  # to get the training API !
  ```
<details>
  <summary>Other installation options</summary>
  #### From source:
  ```bash
  python setup.py install
  ```
  #### From source with symbolic links:
  ```bash
  pip install -e .
  ```
  #### From source using pip:
  ```bash
  pip install git+https://github.com/kornia/kornia
  ```
</details>
## Examples
Run our Jupyter notebooks [tutorials](https://kornia-tutorials.readthedocs.io/en/latest/) to learn to use the library.
<div align="center">
  <a href="https://colab.research.google.com/github/kornia/tutorials/blob/master/source/hello_world_tutorial.ipynb" target="_blank">
    <img src="https://raw.githubusercontent.com/kornia/data/main/hello_world_arturito.png" width="75%" height="75%">
  </a>
</div>
- :white_check_mark: [Image Matching](https://kornia.readthedocs.io/en/latest/applications/image_matching.html) Integrated to [Huggingface Spaces](https://huggingface.co/spaces). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Kornia-LoFTR).
- :white_check_mark: [Face Detection](https://kornia.readthedocs.io/en/latest/applications/face_detection.html) Integrated to [Huggingface Spaces](https://huggingface.co/spaces). See [Gradio Web Demo](https://huggingface.co/spaces/frapochetti/blurry-faces).
## Cite
If you are using kornia in your research-related documents, it is recommended that you cite the paper. See more in [CITATION](https://github.com/kornia/kornia/blob/master/CITATION.md).
  ```bibtex
  @inproceedings{eriba2019kornia,
    author    = {E. Riba, D. Mishkin, D. Ponsa, E. Rublee and G. Bradski},
    title     = {Kornia: an Open Source Differentiable Computer Vision Library for PyTorch},
    booktitle = {Winter Conference on Applications of Computer Vision},
    year      = {2020},
    url       = {https://arxiv.org/pdf/1910.02190.pdf}
  }
  ```
## Contributing
We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us. Please, consider reading the [CONTRIBUTING](https://github.com/kornia/kornia/blob/master/CONTRIBUTING.rst) notes. The participation in this open source project is subject to [Code of Conduct](https://github.com/kornia/kornia/blob/master/CODE_OF_CONDUCT.md).
## Community
- **Forums:** discuss implementations, research, etc. [GitHub Forums](https://github.com/kornia/kornia/discussions)
- **GitHub Issues:** bug reports, feature requests, install issues, RFCs, thoughts, etc. [OPEN](https://github.com/kornia/kornia/issues/new/choose)
- **Slack:** Join our workspace to keep in touch with our core contributors and be part of our community. [JOIN HERE](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-2AQRi~X9Uu6PLMuUZdvfjA)
- For general information, please visit our website at www.kornia.org
<a href="https://github.com/Kornia/kornia/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=Kornia/kornia" width="75%" height="75%" />
</a>
Made with [contrib.rocks](https://contrib.rocks).

%package help
Summary:	Development documents and examples for kornia
Provides:	python3-kornia-doc
%description help
English | [简体中文](README_zh-CN.md)
<!-- prettier-ignore -->
<a href="https://kornia.org">Website</a> •
<a href="https://kornia.readthedocs.io">Docs</a> •
<a href="https://colab.research.google.com/github/kornia/tutorials/blob/master/source/hello_world_tutorial.ipynb">Try it Now</a> •
<a href="https://kornia-tutorials.readthedocs.io">Tutorials</a> •
<a href="https://github.com/kornia/kornia-examples">Examples</a> •
<a href="https://kornia.github.io//kornia-blog">Blog</a> •
<a href="https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-CnydWe5fmvkcktIeRFGCEQ">Community</a>
[![PyPI python](https://img.shields.io/pypi/pyversions/kornia)](https://pypi.org/project/kornia)
[![PyPI version](https://badge.fury.io/py/kornia.svg)](https://pypi.org/project/kornia)
[![Downloads](https://pepy.tech/badge/kornia)](https://pepy.tech/project/kornia)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](LICENCE)
[![Slack](https://img.shields.io/badge/Slack-4A154B?logo=slack&logoColor=white)](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-2AQRi~X9Uu6PLMuUZdvfjA)
[![Twitter](https://img.shields.io/twitter/follow/kornia_foss?style=social)](https://twitter.com/kornia_foss)
[![tests-cpu](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu.yml)
[![tests-cpu-nightly](https://github.com/kornia/kornia/actions/workflows/scheduled_test_nightly.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_nightly.yml)
[![tests-cuda](https://github.com/kornia/kornia/actions/workflows/tests_cuda.yml/badge.svg)](https://github.com/kornia/kornia/actions/workflows/tests_cuda.yml)
[![tests-cpu-float16](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu_half.yml/badge.svg?event=schedule&&branch=master)](https://github.com/kornia/kornia/actions/workflows/scheduled_test_cpu_half.yml)
[![codecov](https://codecov.io/gh/kornia/kornia/branch/master/graph/badge.svg?token=FzCb7e0Bso)](https://codecov.io/gh/kornia/kornia)
[![Documentation Status](https://readthedocs.org/projects/kornia/badge/?version=latest)](https://kornia.readthedocs.io/en/latest/?badge=latest)
[![pre-commit.ci status](https://results.pre-commit.ci/badge/github/kornia/kornia/master.svg)](https://results.pre-commit.ci/latest/github/kornia/kornia/master)
<a href="https://www.producthunt.com/posts/kornia?utm_source=badge-featured&utm_medium=badge&utm_souce=badge-kornia" target="_blank"><img src="https://api.producthunt.com/widgets/embed-image/v1/featured.svg?post_id=306439&theme=light" alt="Kornia - Computer vision library for deep learning | Product Hunt" style="width: 250px; height: 54px;" width="250" height="54" /></a>
</p>
</div>
*Kornia* is a differentiable computer vision library for [PyTorch](https://pytorch.org).
It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses *PyTorch* as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions.
<div align="center">
  <img src="https://github.com/kornia/kornia/raw/master/docs/source/_static/img/hakuna_matata.gif" width="75%" height="75%">
</div>
<!--<div align="center">
  <img src="http://drive.google.com/uc?export=view&id=1KNwaanUdY1MynF0EYfyXjDM3ti09tzaq">
</div>-->
## Overview
Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within neural networks to train models to perform image transformations, epipolar geometry, depth estimation, and low-level image processing such as filtering and edge detection that operate directly on tensors.
At a granular level, Kornia is a library that consists of the following components:
| **Component**                                                                    | **Description**                                                                                                                       |
|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| [kornia](https://kornia.readthedocs.io/en/latest/index.html)                     | a Differentiable Computer Vision library, with strong GPU support                                                                     |
| [kornia.augmentation](https://kornia.readthedocs.io/en/latest/augmentation.html) | a module to perform data augmentation in the GPU                                                                                      |
| [kornia.color](https://kornia.readthedocs.io/en/latest/color.html)               | a set of routines to perform color space conversions                                                                                  |
| [kornia.contrib](https://kornia.readthedocs.io/en/latest/contrib.html)           | a compilation of user contrib and experimental operators                                                                              |
| [kornia.enhance](https://kornia.readthedocs.io/en/latest/enhance.html)           | a module to perform normalization and intensity transformation                                                                        |
| [kornia.feature](https://kornia.readthedocs.io/en/latest/feature.html)           | a module to perform feature detection                                                                                                 |
| [kornia.filters](https://kornia.readthedocs.io/en/latest/filters.html)           | a module to perform image filtering and edge detection                                                                                |
| [kornia.geometry](https://kornia.readthedocs.io/en/latest/geometry.html)         | a geometric computer vision library to perform image transformations, 3D linear algebra and conversions using different camera models |
| [kornia.losses](https://kornia.readthedocs.io/en/latest/losses.html)             | a stack of loss functions to solve different vision tasks                                                                             |
| [kornia.morphology](https://kornia.readthedocs.io/en/latest/morphology.html)     | a module to perform morphological operations                                                                                          |
| [kornia.utils](https://kornia.readthedocs.io/en/latest/utils.html)               | image to tensor utilities and metrics for vision problems                                                                             |
## Installation
### From pip:
  ```bash
  pip install kornia
  pip install kornia[x]  # to get the training API !
  ```
<details>
  <summary>Other installation options</summary>
  #### From source:
  ```bash
  python setup.py install
  ```
  #### From source with symbolic links:
  ```bash
  pip install -e .
  ```
  #### From source using pip:
  ```bash
  pip install git+https://github.com/kornia/kornia
  ```
</details>
## Examples
Run our Jupyter notebooks [tutorials](https://kornia-tutorials.readthedocs.io/en/latest/) to learn to use the library.
<div align="center">
  <a href="https://colab.research.google.com/github/kornia/tutorials/blob/master/source/hello_world_tutorial.ipynb" target="_blank">
    <img src="https://raw.githubusercontent.com/kornia/data/main/hello_world_arturito.png" width="75%" height="75%">
  </a>
</div>
- :white_check_mark: [Image Matching](https://kornia.readthedocs.io/en/latest/applications/image_matching.html) Integrated to [Huggingface Spaces](https://huggingface.co/spaces). See [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Kornia-LoFTR).
- :white_check_mark: [Face Detection](https://kornia.readthedocs.io/en/latest/applications/face_detection.html) Integrated to [Huggingface Spaces](https://huggingface.co/spaces). See [Gradio Web Demo](https://huggingface.co/spaces/frapochetti/blurry-faces).
## Cite
If you are using kornia in your research-related documents, it is recommended that you cite the paper. See more in [CITATION](https://github.com/kornia/kornia/blob/master/CITATION.md).
  ```bibtex
  @inproceedings{eriba2019kornia,
    author    = {E. Riba, D. Mishkin, D. Ponsa, E. Rublee and G. Bradski},
    title     = {Kornia: an Open Source Differentiable Computer Vision Library for PyTorch},
    booktitle = {Winter Conference on Applications of Computer Vision},
    year      = {2020},
    url       = {https://arxiv.org/pdf/1910.02190.pdf}
  }
  ```
## Contributing
We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us. Please, consider reading the [CONTRIBUTING](https://github.com/kornia/kornia/blob/master/CONTRIBUTING.rst) notes. The participation in this open source project is subject to [Code of Conduct](https://github.com/kornia/kornia/blob/master/CODE_OF_CONDUCT.md).
## Community
- **Forums:** discuss implementations, research, etc. [GitHub Forums](https://github.com/kornia/kornia/discussions)
- **GitHub Issues:** bug reports, feature requests, install issues, RFCs, thoughts, etc. [OPEN](https://github.com/kornia/kornia/issues/new/choose)
- **Slack:** Join our workspace to keep in touch with our core contributors and be part of our community. [JOIN HERE](https://join.slack.com/t/kornia/shared_invite/zt-csobk21g-2AQRi~X9Uu6PLMuUZdvfjA)
- For general information, please visit our website at www.kornia.org
<a href="https://github.com/Kornia/kornia/graphs/contributors">
  <img src="https://contrib.rocks/image?repo=Kornia/kornia" width="75%" height="75%" />
</a>
Made with [contrib.rocks](https://contrib.rocks).

%prep
%autosetup -n kornia-0.6.11

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-kornia -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.11-1
- Package Spec generated