summaryrefslogtreecommitdiff
path: root/python-ktboost.spec
blob: e9932ba1bdfcd1cb4dc47b6947774aecec35b175 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
%global _empty_manifest_terminate_build 0
Name:		python-KTBoost
Version:	0.2.2
Release:	1
Summary:	Implements several boosting algorithms in Python
License:	MIT License
URL:		https://github.com/fabsig/KTBoost
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/85/72/32bce1b2f133ca5c48e168c932870da1212771c21ce31dae0060bd45e22a/KTBoost-0.2.2.tar.gz
BuildArch:	noarch

Requires:	python3-scikit-learn
Requires:	python3-bottleneck
Requires:	python3-matplotlib

%description
# KTBoost - A Python Package for Boosting

This Python package implements several boosting algorithms with different combinations of base learners, optimization algorithms, and loss functions.

## Description

Concerning **base learners**, KTBoost includes:

* Trees 
* Reproducing kernel Hilbert space (RKHS) ridge regression functions (i.e., posterior means of Gaussian processes)
* A combination of the two (the KTBoost algorithm) 


Concerning the **optimization** step for finding the boosting updates, the package supports:

* Gradient descent
* Newton's method (if applicable)
* A hybrid gradient-Newton version for trees as base learners (if applicable)


The package implements the following **loss functions**:

 * Continuous data ("regression"): quadratic loss (L2 loss), absolute error (L1 loss), Huber loss, quantile regression loss, Gamma regression loss, negative Gaussian log-likelihood with both the mean and the standard deviation as functions of features
* Count data ("regression"): Poisson regression loss
* (Unorderd) Categorical data ("classification"): logistic regression loss (log loss), exponential loss, cross entropy loss with softmax
* Mixed continuous-categorical data ("censored regression"): negative Tobit likelihood (the Grabit model), Tweedie loss




## Installation

It can be **installed** using 
```
pip install -U KTBoost
```
and then loaded using 
```python
import KTBoost.KTBoost as KTBoost
```

## Author
Fabio Sigrist

## References

* Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 1189-1232.
* [Sigrist, F., & Hirnschall, C. (2019).](https://arxiv.org/abs/1711.08695) Grabit: Gradient Tree Boosted Tobit Models for Default Prediction. Journal of Banking & Finance
* [Sigrist, F. (2021)](https://arxiv.org/abs/1808.03064). Gradient and Newton Boosting for Classification and Regression. Expert Systems with Applications.
* [Sigrist, F. (2019).](https://arxiv.org/abs/1902.03999) KTBoost: Combined Kernel and Tree Boosting. arXiv preprint arXiv:1902.03999.


## Usage and examples
The package is build as an extension of the scikit-learn implementation of boosting algorithms and its workflow is very similar to that of scikit-learn.

The two main classes are `KTBoost.BoostingClassifier` and `KTBoost.BoostingRegressor`. The following **code examples** show how the package can be used. See also below for more information on the [**main parameters**](#parameters).

See also the [**Grabit demo**](https://github.com/fabsig/KTBoost/blob/master/examples/Grabit_demo.py) for working **examples of the Grabit model** and the [**gamma regression demo**](https://github.com/fabsig/KTBoost/blob/master/examples/Gamma_regression_demo.py) for an example with the Gamma loss.


#### Define models, train models, make predictions
```python
import KTBoost.KTBoost as KTBoost

################################################
## Define model (see below for more examples) ##
################################################
## Standard tree-boosting for regression with quadratic loss and hybrid gradient-Newton updates as in Friedman (2001)
model = KTBoost.BoostingRegressor(loss='ls')

##################
## Train models ##
##################
model.fit(Xtrain,ytrain)

######################
## Make predictions ##
######################
model.predict(Xpred)
```

#### More examples of models
```python
#############################
## More examples of models ##
#############################
## Boosted Tobit model, i.e. Grabit model (Sigrist and Hirnschall, 2017), 
## with lower and upper limits at 0 and 100
model = KTBoost.BoostingRegressor(loss='tobit',yl=0,yu=100)
## KTBoost algorithm (combined kernel and tree boosting) for classification with Newton updates
model = KTBoost.BoostingClassifier(loss='deviance',base_learner='combined',
                                    update_step='newton',theta=1)
## Gradient boosting for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='gradient')
## Newton boosting for classification model with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='newton')
## Hybrid gradient-Newton boosting (Friedman, 2001) for classification with 
## trees as base learners (this is the version that scikit-learn implements)
model = KTBoost.BoostingClassifier(loss='deviance',update_step='hybrid')
## Kernel boosting for regression with quadratic loss
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',theta=1)
## Kernel boosting with the Nystroem method and the range parameter theta chosen 
## as the average distance to the 100-nearest neighbors (of the Nystroem samples)
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',nystroem=True,
                                  n_components=1000,theta=None,n_neighbors=100)
## Regression model where both the mean and the standard deviation depend 
## on the covariates / features
model = KTBoost.BoostingRegressor(loss='msr')
```

#### Feature importances and partial dependence plots
```python
#########################
## Feature importances ## (only defined for trees as base learners)
#########################
Xtrain=np.random.rand(1000,10)
ytrain=2*Xtrain[:,0]+2*Xtrain[:,1]+np.random.rand(1000)

model = KTBoost.BoostingRegressor()
model.fit(Xtrain,ytrain)
## Extract feature importances calculated as described in Friedman (2001)
feat_imp = model.feature_importances_

## Alternatively, plot feature importances directly
KTBoost.plot_feature_importances(model=model,feature_names=feature_names,maxFeat=10)

##############################
## Partial dependence plots ## (currently only implemented for trees as base learners)
##############################
from KTBoost.partial_dependence import plot_partial_dependence
import matplotlib.pyplot as plt
features = [0,1,2,3,4,5]
fig, axs = plot_partial_dependence(model,Xtrain,features,percentiles=(0,1),figsize=(8,6))
plt.subplots_adjust(top=0.9)
fig.suptitle('Partial dependence plots')

## Alternatively, get partial dependencies in numerical form
from KTBoost.partial_dependence import partial_dependence
kwargs = dict(X=Xtrain, percentiles=(0, 1))
partial_dependence(model,[0],**kwargs)
```

## Parameters
#### Important boosting-related parameters
In the following, we describe the most important parameters of the constructors of the two classes `KTBoost.BoostingClassifier` and `KTBoost.BoostingRegressor`.

* **loss** : loss function to be optimized.
    * `KTBoost.BoostingClassifier`
    {'deviance', 'exponential'}, optional (default='deviance')

        'deviance' refers to the logistic regression loss for binary classification, and the cross-entropy        loss with the softmax function for multiclass classification.

    * `KTBoost.BoostingRegressor`
    {'ls', 'lad', 'huber', 'quantile', 'poisson', 'tweedie', 'gamma', 'tobit', 'msr'}, optional (default='ls')

        'ls' refers to the squarred loss. 'lad' (least absolute deviation) is a robust version.
        'huber' is a combination of the former two. 
        'quantile' does quantile regression (use 'alpha' to specify the quantile).
        'tobit' corresponds to the [Grabit model](https://arxiv.org/abs/1711.08695) with a Tobit loss.
        'msr' is a linear regression model where both the mean and the logarithm of the standard deviation are varying.

* **update_step** : string, default="hybrid"

    Defines how boosting updates are calculated. Use either "gradient" for gradient boosting
    or "newton" for Newton boosting (if applicable). "hybrid" uses a gradient step for finding the structur of trees and a Newton step for finding the leaf values. For kernel boosting, "hybrid" uses
    gradient descent. See the [reference paper](https://arxiv.org/abs/1808.03064) for more information.

* **base_learner** : string, default="tree"

    Base learners used in boosting updates. Choose among "tree" for trees, "kernel" for
    reproducing kernel Hilbert space (RKHS) regression functions, and "combined" for a combination of the two. See the [reference paper](https://arxiv.org/abs/1902.03999) for more information.

* **learning_rate** : float, optional (default=0.1)

    The learning rate shrinks the contribution of each base learner by 'learning_rate'.
    There is a trade-off between learning_rate and n_estimators.

* **n_estimators** : int (default=100)

    The number of boosting iterations to perform.

* **max_depth** : integer, optional (default=5)

    Maximum depth of the regression trees. The maximum
    depth limits the number of nodes in the tree. This value determines the interaction
    of the predictor variables.

* **min_samples_leaf** : int, float, optional (default=1)

    The minimum number of samples required to be at a leaf node:

    - If int, then consider `min_samples_leaf` as the minimum number.
    - If float, then `min_samples_leaf` is a percentage and
      `ceil(min_samples_leaf * n_samples)` are the minimum
      number of samples for each node.

* **min_weight_leaf** : float, optional (default=1.)

    The minimum number of weighted samples required to be at a leaf node.
    If Newton boosting is used, this corresponds to the equivalent (i.e.,
    normalized) number of weighted samples where the weights are determined
    based on the second derivatives / Hessians.

* **criterion** : string, optional (default="mse")

    The function to measure the quality of a split. Supported criteria
    are "friedman_mse" for the mean squared error with improvement
    score by Friedman, "mse" for mean squared error, and "mae" for
    the mean absolute error.

* **random_state** : int, RandomState instance or None, optional (default=None)

    If int, random_state is the seed used by the random number generator;
    If RandomState instance, random_state is the random number generator;
    If None, the random number generator is the RandomState instance used
    by `np.random`.

* **kernel** : string, default="rbf"

    Kernel function used for kernel boosting. Currently, supports "laplace", "rbf", and "GW"
    (generalied Wendland with "smoothness parameter" mu=1).

* **theta** : float, default: 1.

    Range parameter of the kernel functions which determines how fast the kernel function
    decays with distance.

* **n_neighbors** : int, default: None

    If the range parameter 'theta' is not given, it can be determined from the data using this
    parameter. The parameter 'theta' is chosen as the average distance of the 'n_neighbors'
    nearest neighbors distances. The parameter 'range_adjust' can be used to modify this.
    If range_adjust=3 or range_adjust=4.6, 'theta' is chosen such that the kernel function has
    decayed to essentially zero (0.05 or 0.01, respectively) at the average distance of the
    'n_neighbors' nearest neighbors (for rbf and laplace kernel).

* **alphaReg** : float, default: 1.

    Regularization parameter for kernel Ridge regression boosting updates. This is added to the diagonal of the kernel matrix. Must be a non-negative number. A non-zero value helps to avoid singular matrices.

* **nystroem** : boolean, default=None

    Indicates whether Nystroem sampling is used or not for kernel boosting.

* **n_components** : int, detault = 100

    Number of data points used in Nystroem sampling for kernel boosting.

#### Important loss function-related parameters
*    **sigma** : float, default=1
        Standard deviation of the latent variable in a Tobit model.

*    **yl** : float, default=0
        Lower limit of the Tobit model. If there is no lower censoring,
        simply set this parameter to a low value (lower than all data points).

*    **yu** : float, default=1
        Upper limit of the Tobit model. If there is no upper censoring,
        simply set this parameter to a high value (higher than all data points).

*    **gamma** : float, default=1
        Shape parameter for gamma regression.

* **tweedie_variance_power**: float, default = 1.5
    Tweedie power parameter for tweedie loss.




%package -n python3-KTBoost
Summary:	Implements several boosting algorithms in Python
Provides:	python-KTBoost
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-KTBoost
# KTBoost - A Python Package for Boosting

This Python package implements several boosting algorithms with different combinations of base learners, optimization algorithms, and loss functions.

## Description

Concerning **base learners**, KTBoost includes:

* Trees 
* Reproducing kernel Hilbert space (RKHS) ridge regression functions (i.e., posterior means of Gaussian processes)
* A combination of the two (the KTBoost algorithm) 


Concerning the **optimization** step for finding the boosting updates, the package supports:

* Gradient descent
* Newton's method (if applicable)
* A hybrid gradient-Newton version for trees as base learners (if applicable)


The package implements the following **loss functions**:

 * Continuous data ("regression"): quadratic loss (L2 loss), absolute error (L1 loss), Huber loss, quantile regression loss, Gamma regression loss, negative Gaussian log-likelihood with both the mean and the standard deviation as functions of features
* Count data ("regression"): Poisson regression loss
* (Unorderd) Categorical data ("classification"): logistic regression loss (log loss), exponential loss, cross entropy loss with softmax
* Mixed continuous-categorical data ("censored regression"): negative Tobit likelihood (the Grabit model), Tweedie loss




## Installation

It can be **installed** using 
```
pip install -U KTBoost
```
and then loaded using 
```python
import KTBoost.KTBoost as KTBoost
```

## Author
Fabio Sigrist

## References

* Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 1189-1232.
* [Sigrist, F., & Hirnschall, C. (2019).](https://arxiv.org/abs/1711.08695) Grabit: Gradient Tree Boosted Tobit Models for Default Prediction. Journal of Banking & Finance
* [Sigrist, F. (2021)](https://arxiv.org/abs/1808.03064). Gradient and Newton Boosting for Classification and Regression. Expert Systems with Applications.
* [Sigrist, F. (2019).](https://arxiv.org/abs/1902.03999) KTBoost: Combined Kernel and Tree Boosting. arXiv preprint arXiv:1902.03999.


## Usage and examples
The package is build as an extension of the scikit-learn implementation of boosting algorithms and its workflow is very similar to that of scikit-learn.

The two main classes are `KTBoost.BoostingClassifier` and `KTBoost.BoostingRegressor`. The following **code examples** show how the package can be used. See also below for more information on the [**main parameters**](#parameters).

See also the [**Grabit demo**](https://github.com/fabsig/KTBoost/blob/master/examples/Grabit_demo.py) for working **examples of the Grabit model** and the [**gamma regression demo**](https://github.com/fabsig/KTBoost/blob/master/examples/Gamma_regression_demo.py) for an example with the Gamma loss.


#### Define models, train models, make predictions
```python
import KTBoost.KTBoost as KTBoost

################################################
## Define model (see below for more examples) ##
################################################
## Standard tree-boosting for regression with quadratic loss and hybrid gradient-Newton updates as in Friedman (2001)
model = KTBoost.BoostingRegressor(loss='ls')

##################
## Train models ##
##################
model.fit(Xtrain,ytrain)

######################
## Make predictions ##
######################
model.predict(Xpred)
```

#### More examples of models
```python
#############################
## More examples of models ##
#############################
## Boosted Tobit model, i.e. Grabit model (Sigrist and Hirnschall, 2017), 
## with lower and upper limits at 0 and 100
model = KTBoost.BoostingRegressor(loss='tobit',yl=0,yu=100)
## KTBoost algorithm (combined kernel and tree boosting) for classification with Newton updates
model = KTBoost.BoostingClassifier(loss='deviance',base_learner='combined',
                                    update_step='newton',theta=1)
## Gradient boosting for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='gradient')
## Newton boosting for classification model with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='newton')
## Hybrid gradient-Newton boosting (Friedman, 2001) for classification with 
## trees as base learners (this is the version that scikit-learn implements)
model = KTBoost.BoostingClassifier(loss='deviance',update_step='hybrid')
## Kernel boosting for regression with quadratic loss
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',theta=1)
## Kernel boosting with the Nystroem method and the range parameter theta chosen 
## as the average distance to the 100-nearest neighbors (of the Nystroem samples)
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',nystroem=True,
                                  n_components=1000,theta=None,n_neighbors=100)
## Regression model where both the mean and the standard deviation depend 
## on the covariates / features
model = KTBoost.BoostingRegressor(loss='msr')
```

#### Feature importances and partial dependence plots
```python
#########################
## Feature importances ## (only defined for trees as base learners)
#########################
Xtrain=np.random.rand(1000,10)
ytrain=2*Xtrain[:,0]+2*Xtrain[:,1]+np.random.rand(1000)

model = KTBoost.BoostingRegressor()
model.fit(Xtrain,ytrain)
## Extract feature importances calculated as described in Friedman (2001)
feat_imp = model.feature_importances_

## Alternatively, plot feature importances directly
KTBoost.plot_feature_importances(model=model,feature_names=feature_names,maxFeat=10)

##############################
## Partial dependence plots ## (currently only implemented for trees as base learners)
##############################
from KTBoost.partial_dependence import plot_partial_dependence
import matplotlib.pyplot as plt
features = [0,1,2,3,4,5]
fig, axs = plot_partial_dependence(model,Xtrain,features,percentiles=(0,1),figsize=(8,6))
plt.subplots_adjust(top=0.9)
fig.suptitle('Partial dependence plots')

## Alternatively, get partial dependencies in numerical form
from KTBoost.partial_dependence import partial_dependence
kwargs = dict(X=Xtrain, percentiles=(0, 1))
partial_dependence(model,[0],**kwargs)
```

## Parameters
#### Important boosting-related parameters
In the following, we describe the most important parameters of the constructors of the two classes `KTBoost.BoostingClassifier` and `KTBoost.BoostingRegressor`.

* **loss** : loss function to be optimized.
    * `KTBoost.BoostingClassifier`
    {'deviance', 'exponential'}, optional (default='deviance')

        'deviance' refers to the logistic regression loss for binary classification, and the cross-entropy        loss with the softmax function for multiclass classification.

    * `KTBoost.BoostingRegressor`
    {'ls', 'lad', 'huber', 'quantile', 'poisson', 'tweedie', 'gamma', 'tobit', 'msr'}, optional (default='ls')

        'ls' refers to the squarred loss. 'lad' (least absolute deviation) is a robust version.
        'huber' is a combination of the former two. 
        'quantile' does quantile regression (use 'alpha' to specify the quantile).
        'tobit' corresponds to the [Grabit model](https://arxiv.org/abs/1711.08695) with a Tobit loss.
        'msr' is a linear regression model where both the mean and the logarithm of the standard deviation are varying.

* **update_step** : string, default="hybrid"

    Defines how boosting updates are calculated. Use either "gradient" for gradient boosting
    or "newton" for Newton boosting (if applicable). "hybrid" uses a gradient step for finding the structur of trees and a Newton step for finding the leaf values. For kernel boosting, "hybrid" uses
    gradient descent. See the [reference paper](https://arxiv.org/abs/1808.03064) for more information.

* **base_learner** : string, default="tree"

    Base learners used in boosting updates. Choose among "tree" for trees, "kernel" for
    reproducing kernel Hilbert space (RKHS) regression functions, and "combined" for a combination of the two. See the [reference paper](https://arxiv.org/abs/1902.03999) for more information.

* **learning_rate** : float, optional (default=0.1)

    The learning rate shrinks the contribution of each base learner by 'learning_rate'.
    There is a trade-off between learning_rate and n_estimators.

* **n_estimators** : int (default=100)

    The number of boosting iterations to perform.

* **max_depth** : integer, optional (default=5)

    Maximum depth of the regression trees. The maximum
    depth limits the number of nodes in the tree. This value determines the interaction
    of the predictor variables.

* **min_samples_leaf** : int, float, optional (default=1)

    The minimum number of samples required to be at a leaf node:

    - If int, then consider `min_samples_leaf` as the minimum number.
    - If float, then `min_samples_leaf` is a percentage and
      `ceil(min_samples_leaf * n_samples)` are the minimum
      number of samples for each node.

* **min_weight_leaf** : float, optional (default=1.)

    The minimum number of weighted samples required to be at a leaf node.
    If Newton boosting is used, this corresponds to the equivalent (i.e.,
    normalized) number of weighted samples where the weights are determined
    based on the second derivatives / Hessians.

* **criterion** : string, optional (default="mse")

    The function to measure the quality of a split. Supported criteria
    are "friedman_mse" for the mean squared error with improvement
    score by Friedman, "mse" for mean squared error, and "mae" for
    the mean absolute error.

* **random_state** : int, RandomState instance or None, optional (default=None)

    If int, random_state is the seed used by the random number generator;
    If RandomState instance, random_state is the random number generator;
    If None, the random number generator is the RandomState instance used
    by `np.random`.

* **kernel** : string, default="rbf"

    Kernel function used for kernel boosting. Currently, supports "laplace", "rbf", and "GW"
    (generalied Wendland with "smoothness parameter" mu=1).

* **theta** : float, default: 1.

    Range parameter of the kernel functions which determines how fast the kernel function
    decays with distance.

* **n_neighbors** : int, default: None

    If the range parameter 'theta' is not given, it can be determined from the data using this
    parameter. The parameter 'theta' is chosen as the average distance of the 'n_neighbors'
    nearest neighbors distances. The parameter 'range_adjust' can be used to modify this.
    If range_adjust=3 or range_adjust=4.6, 'theta' is chosen such that the kernel function has
    decayed to essentially zero (0.05 or 0.01, respectively) at the average distance of the
    'n_neighbors' nearest neighbors (for rbf and laplace kernel).

* **alphaReg** : float, default: 1.

    Regularization parameter for kernel Ridge regression boosting updates. This is added to the diagonal of the kernel matrix. Must be a non-negative number. A non-zero value helps to avoid singular matrices.

* **nystroem** : boolean, default=None

    Indicates whether Nystroem sampling is used or not for kernel boosting.

* **n_components** : int, detault = 100

    Number of data points used in Nystroem sampling for kernel boosting.

#### Important loss function-related parameters
*    **sigma** : float, default=1
        Standard deviation of the latent variable in a Tobit model.

*    **yl** : float, default=0
        Lower limit of the Tobit model. If there is no lower censoring,
        simply set this parameter to a low value (lower than all data points).

*    **yu** : float, default=1
        Upper limit of the Tobit model. If there is no upper censoring,
        simply set this parameter to a high value (higher than all data points).

*    **gamma** : float, default=1
        Shape parameter for gamma regression.

* **tweedie_variance_power**: float, default = 1.5
    Tweedie power parameter for tweedie loss.




%package help
Summary:	Development documents and examples for KTBoost
Provides:	python3-KTBoost-doc
%description help
# KTBoost - A Python Package for Boosting

This Python package implements several boosting algorithms with different combinations of base learners, optimization algorithms, and loss functions.

## Description

Concerning **base learners**, KTBoost includes:

* Trees 
* Reproducing kernel Hilbert space (RKHS) ridge regression functions (i.e., posterior means of Gaussian processes)
* A combination of the two (the KTBoost algorithm) 


Concerning the **optimization** step for finding the boosting updates, the package supports:

* Gradient descent
* Newton's method (if applicable)
* A hybrid gradient-Newton version for trees as base learners (if applicable)


The package implements the following **loss functions**:

 * Continuous data ("regression"): quadratic loss (L2 loss), absolute error (L1 loss), Huber loss, quantile regression loss, Gamma regression loss, negative Gaussian log-likelihood with both the mean and the standard deviation as functions of features
* Count data ("regression"): Poisson regression loss
* (Unorderd) Categorical data ("classification"): logistic regression loss (log loss), exponential loss, cross entropy loss with softmax
* Mixed continuous-categorical data ("censored regression"): negative Tobit likelihood (the Grabit model), Tweedie loss




## Installation

It can be **installed** using 
```
pip install -U KTBoost
```
and then loaded using 
```python
import KTBoost.KTBoost as KTBoost
```

## Author
Fabio Sigrist

## References

* Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 1189-1232.
* [Sigrist, F., & Hirnschall, C. (2019).](https://arxiv.org/abs/1711.08695) Grabit: Gradient Tree Boosted Tobit Models for Default Prediction. Journal of Banking & Finance
* [Sigrist, F. (2021)](https://arxiv.org/abs/1808.03064). Gradient and Newton Boosting for Classification and Regression. Expert Systems with Applications.
* [Sigrist, F. (2019).](https://arxiv.org/abs/1902.03999) KTBoost: Combined Kernel and Tree Boosting. arXiv preprint arXiv:1902.03999.


## Usage and examples
The package is build as an extension of the scikit-learn implementation of boosting algorithms and its workflow is very similar to that of scikit-learn.

The two main classes are `KTBoost.BoostingClassifier` and `KTBoost.BoostingRegressor`. The following **code examples** show how the package can be used. See also below for more information on the [**main parameters**](#parameters).

See also the [**Grabit demo**](https://github.com/fabsig/KTBoost/blob/master/examples/Grabit_demo.py) for working **examples of the Grabit model** and the [**gamma regression demo**](https://github.com/fabsig/KTBoost/blob/master/examples/Gamma_regression_demo.py) for an example with the Gamma loss.


#### Define models, train models, make predictions
```python
import KTBoost.KTBoost as KTBoost

################################################
## Define model (see below for more examples) ##
################################################
## Standard tree-boosting for regression with quadratic loss and hybrid gradient-Newton updates as in Friedman (2001)
model = KTBoost.BoostingRegressor(loss='ls')

##################
## Train models ##
##################
model.fit(Xtrain,ytrain)

######################
## Make predictions ##
######################
model.predict(Xpred)
```

#### More examples of models
```python
#############################
## More examples of models ##
#############################
## Boosted Tobit model, i.e. Grabit model (Sigrist and Hirnschall, 2017), 
## with lower and upper limits at 0 and 100
model = KTBoost.BoostingRegressor(loss='tobit',yl=0,yu=100)
## KTBoost algorithm (combined kernel and tree boosting) for classification with Newton updates
model = KTBoost.BoostingClassifier(loss='deviance',base_learner='combined',
                                    update_step='newton',theta=1)
## Gradient boosting for classification with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='gradient')
## Newton boosting for classification model with trees as base learners
model = KTBoost.BoostingClassifier(loss='deviance',update_step='newton')
## Hybrid gradient-Newton boosting (Friedman, 2001) for classification with 
## trees as base learners (this is the version that scikit-learn implements)
model = KTBoost.BoostingClassifier(loss='deviance',update_step='hybrid')
## Kernel boosting for regression with quadratic loss
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',theta=1)
## Kernel boosting with the Nystroem method and the range parameter theta chosen 
## as the average distance to the 100-nearest neighbors (of the Nystroem samples)
model = KTBoost.BoostingRegressor(loss='ls',base_learner='kernel',nystroem=True,
                                  n_components=1000,theta=None,n_neighbors=100)
## Regression model where both the mean and the standard deviation depend 
## on the covariates / features
model = KTBoost.BoostingRegressor(loss='msr')
```

#### Feature importances and partial dependence plots
```python
#########################
## Feature importances ## (only defined for trees as base learners)
#########################
Xtrain=np.random.rand(1000,10)
ytrain=2*Xtrain[:,0]+2*Xtrain[:,1]+np.random.rand(1000)

model = KTBoost.BoostingRegressor()
model.fit(Xtrain,ytrain)
## Extract feature importances calculated as described in Friedman (2001)
feat_imp = model.feature_importances_

## Alternatively, plot feature importances directly
KTBoost.plot_feature_importances(model=model,feature_names=feature_names,maxFeat=10)

##############################
## Partial dependence plots ## (currently only implemented for trees as base learners)
##############################
from KTBoost.partial_dependence import plot_partial_dependence
import matplotlib.pyplot as plt
features = [0,1,2,3,4,5]
fig, axs = plot_partial_dependence(model,Xtrain,features,percentiles=(0,1),figsize=(8,6))
plt.subplots_adjust(top=0.9)
fig.suptitle('Partial dependence plots')

## Alternatively, get partial dependencies in numerical form
from KTBoost.partial_dependence import partial_dependence
kwargs = dict(X=Xtrain, percentiles=(0, 1))
partial_dependence(model,[0],**kwargs)
```

## Parameters
#### Important boosting-related parameters
In the following, we describe the most important parameters of the constructors of the two classes `KTBoost.BoostingClassifier` and `KTBoost.BoostingRegressor`.

* **loss** : loss function to be optimized.
    * `KTBoost.BoostingClassifier`
    {'deviance', 'exponential'}, optional (default='deviance')

        'deviance' refers to the logistic regression loss for binary classification, and the cross-entropy        loss with the softmax function for multiclass classification.

    * `KTBoost.BoostingRegressor`
    {'ls', 'lad', 'huber', 'quantile', 'poisson', 'tweedie', 'gamma', 'tobit', 'msr'}, optional (default='ls')

        'ls' refers to the squarred loss. 'lad' (least absolute deviation) is a robust version.
        'huber' is a combination of the former two. 
        'quantile' does quantile regression (use 'alpha' to specify the quantile).
        'tobit' corresponds to the [Grabit model](https://arxiv.org/abs/1711.08695) with a Tobit loss.
        'msr' is a linear regression model where both the mean and the logarithm of the standard deviation are varying.

* **update_step** : string, default="hybrid"

    Defines how boosting updates are calculated. Use either "gradient" for gradient boosting
    or "newton" for Newton boosting (if applicable). "hybrid" uses a gradient step for finding the structur of trees and a Newton step for finding the leaf values. For kernel boosting, "hybrid" uses
    gradient descent. See the [reference paper](https://arxiv.org/abs/1808.03064) for more information.

* **base_learner** : string, default="tree"

    Base learners used in boosting updates. Choose among "tree" for trees, "kernel" for
    reproducing kernel Hilbert space (RKHS) regression functions, and "combined" for a combination of the two. See the [reference paper](https://arxiv.org/abs/1902.03999) for more information.

* **learning_rate** : float, optional (default=0.1)

    The learning rate shrinks the contribution of each base learner by 'learning_rate'.
    There is a trade-off between learning_rate and n_estimators.

* **n_estimators** : int (default=100)

    The number of boosting iterations to perform.

* **max_depth** : integer, optional (default=5)

    Maximum depth of the regression trees. The maximum
    depth limits the number of nodes in the tree. This value determines the interaction
    of the predictor variables.

* **min_samples_leaf** : int, float, optional (default=1)

    The minimum number of samples required to be at a leaf node:

    - If int, then consider `min_samples_leaf` as the minimum number.
    - If float, then `min_samples_leaf` is a percentage and
      `ceil(min_samples_leaf * n_samples)` are the minimum
      number of samples for each node.

* **min_weight_leaf** : float, optional (default=1.)

    The minimum number of weighted samples required to be at a leaf node.
    If Newton boosting is used, this corresponds to the equivalent (i.e.,
    normalized) number of weighted samples where the weights are determined
    based on the second derivatives / Hessians.

* **criterion** : string, optional (default="mse")

    The function to measure the quality of a split. Supported criteria
    are "friedman_mse" for the mean squared error with improvement
    score by Friedman, "mse" for mean squared error, and "mae" for
    the mean absolute error.

* **random_state** : int, RandomState instance or None, optional (default=None)

    If int, random_state is the seed used by the random number generator;
    If RandomState instance, random_state is the random number generator;
    If None, the random number generator is the RandomState instance used
    by `np.random`.

* **kernel** : string, default="rbf"

    Kernel function used for kernel boosting. Currently, supports "laplace", "rbf", and "GW"
    (generalied Wendland with "smoothness parameter" mu=1).

* **theta** : float, default: 1.

    Range parameter of the kernel functions which determines how fast the kernel function
    decays with distance.

* **n_neighbors** : int, default: None

    If the range parameter 'theta' is not given, it can be determined from the data using this
    parameter. The parameter 'theta' is chosen as the average distance of the 'n_neighbors'
    nearest neighbors distances. The parameter 'range_adjust' can be used to modify this.
    If range_adjust=3 or range_adjust=4.6, 'theta' is chosen such that the kernel function has
    decayed to essentially zero (0.05 or 0.01, respectively) at the average distance of the
    'n_neighbors' nearest neighbors (for rbf and laplace kernel).

* **alphaReg** : float, default: 1.

    Regularization parameter for kernel Ridge regression boosting updates. This is added to the diagonal of the kernel matrix. Must be a non-negative number. A non-zero value helps to avoid singular matrices.

* **nystroem** : boolean, default=None

    Indicates whether Nystroem sampling is used or not for kernel boosting.

* **n_components** : int, detault = 100

    Number of data points used in Nystroem sampling for kernel boosting.

#### Important loss function-related parameters
*    **sigma** : float, default=1
        Standard deviation of the latent variable in a Tobit model.

*    **yl** : float, default=0
        Lower limit of the Tobit model. If there is no lower censoring,
        simply set this parameter to a low value (lower than all data points).

*    **yu** : float, default=1
        Upper limit of the Tobit model. If there is no upper censoring,
        simply set this parameter to a high value (higher than all data points).

*    **gamma** : float, default=1
        Shape parameter for gamma regression.

* **tweedie_variance_power**: float, default = 1.5
    Tweedie power parameter for tweedie loss.




%prep
%autosetup -n KTBoost-0.2.2

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-KTBoost -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.2-1
- Package Spec generated