1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
%global _empty_manifest_terminate_build 0
Name: python-kxy
Version: 1.4.11
Release: 1
Summary: A Powerful Serverless Pre-Learning and Post-Learning Analysis Toolkit
License: GPLv3
URL: https://www.kxy.ai
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/43/d1/a8ce29122712ba3edd8cfabcbd2a0f30bfb3534b4f406f5489fa5c982a4b/kxy-1.4.11.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-requests
Requires: python3-pandarallel
Requires: python3-halo
Requires: python3-ipywidgets
Requires: python3-scikit-learn
%description
# Boosting The Productivity of Machine Learning Engineers
[](https://github.com/kxytechnologies/kxy-python/blob/master/LICENSE)
[](https://www.kxy.ai/)
[](https://www.kxy.ai/)
## Documentation
https://www.kxy.ai/reference/
## Blog
https://blog.kxy.ai
## Installation
From PyPi:
```Bash
pip install kxy -U
```
From GitHub:
```Bash
git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install .
```
## Authentication
All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run
```Bash
kxy configure
```
and follow the instructions. To get your own API key you need an account; you can sign up [here](https://www.kxy.ai/signup/). You'll then be automatically given an API key which you can find [here](https://www.kxy.ai/portal/profile/identity/).
## Docker
The Docker image [kxytechnologies/kxy](https://hub.docker.com/repository/docker/kxytechnologies/kxy) has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package.
To start a Jupyter Notebook server from a sandboxed Docker environment, run
```Bash
docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''"
```
where you should replace `<YOUR API KEY>` with your API key and navigate to [http://localhost:5555](http://localhost:5555) in your browser. This docker environment comes with [all examples available on the documentation website](https://www.kxy.ai/reference/latest/examples/).
To start a Jupyter Notebook server from an existing directory of notebooks, run
```Bash
docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''"
```
where you should replace `</path/to/your/local/dir>` with the path to your local notebook folder and navigate to [http://localhost:5555](http://localhost:5555) in your browser.
You can also get the same Docker image from GitHub [here](https://github.com/kxytechnologies/kxy-python/pkgs/container/kxy-python).
## Other Programming Language
We plan to release friendly API client in more programming language.
In the meantime, you can directly issue requests to our [RESTFul API](https://www.kxy.ai/reference/latest/api/index.html) using your favorite programming language.
## Pricing
All API keys are given a free quota (a few dozen backend tasks) that should be enough to try out the package and see if you love it. Beyond the free quota you will be billed a small fee per task.
KXY is free for academic use; simply signup with your university email.
KXY is also free for Kaggle competitions; sign up and email kaggle@kxy.ai to get a promotional code.
%package -n python3-kxy
Summary: A Powerful Serverless Pre-Learning and Post-Learning Analysis Toolkit
Provides: python-kxy
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-kxy
# Boosting The Productivity of Machine Learning Engineers
[](https://github.com/kxytechnologies/kxy-python/blob/master/LICENSE)
[](https://www.kxy.ai/)
[](https://www.kxy.ai/)
## Documentation
https://www.kxy.ai/reference/
## Blog
https://blog.kxy.ai
## Installation
From PyPi:
```Bash
pip install kxy -U
```
From GitHub:
```Bash
git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install .
```
## Authentication
All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run
```Bash
kxy configure
```
and follow the instructions. To get your own API key you need an account; you can sign up [here](https://www.kxy.ai/signup/). You'll then be automatically given an API key which you can find [here](https://www.kxy.ai/portal/profile/identity/).
## Docker
The Docker image [kxytechnologies/kxy](https://hub.docker.com/repository/docker/kxytechnologies/kxy) has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package.
To start a Jupyter Notebook server from a sandboxed Docker environment, run
```Bash
docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''"
```
where you should replace `<YOUR API KEY>` with your API key and navigate to [http://localhost:5555](http://localhost:5555) in your browser. This docker environment comes with [all examples available on the documentation website](https://www.kxy.ai/reference/latest/examples/).
To start a Jupyter Notebook server from an existing directory of notebooks, run
```Bash
docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''"
```
where you should replace `</path/to/your/local/dir>` with the path to your local notebook folder and navigate to [http://localhost:5555](http://localhost:5555) in your browser.
You can also get the same Docker image from GitHub [here](https://github.com/kxytechnologies/kxy-python/pkgs/container/kxy-python).
## Other Programming Language
We plan to release friendly API client in more programming language.
In the meantime, you can directly issue requests to our [RESTFul API](https://www.kxy.ai/reference/latest/api/index.html) using your favorite programming language.
## Pricing
All API keys are given a free quota (a few dozen backend tasks) that should be enough to try out the package and see if you love it. Beyond the free quota you will be billed a small fee per task.
KXY is free for academic use; simply signup with your university email.
KXY is also free for Kaggle competitions; sign up and email kaggle@kxy.ai to get a promotional code.
%package help
Summary: Development documents and examples for kxy
Provides: python3-kxy-doc
%description help
# Boosting The Productivity of Machine Learning Engineers
[](https://github.com/kxytechnologies/kxy-python/blob/master/LICENSE)
[](https://www.kxy.ai/)
[](https://www.kxy.ai/)
## Documentation
https://www.kxy.ai/reference/
## Blog
https://blog.kxy.ai
## Installation
From PyPi:
```Bash
pip install kxy -U
```
From GitHub:
```Bash
git clone https://github.com/kxytechnologies/kxy-python.git & cd ./kxy-python & pip install .
```
## Authentication
All heavy-duty computations are run on our serverless infrastructure and require an API key. To configure the package with your API key, run
```Bash
kxy configure
```
and follow the instructions. To get your own API key you need an account; you can sign up [here](https://www.kxy.ai/signup/). You'll then be automatically given an API key which you can find [here](https://www.kxy.ai/portal/profile/identity/).
## Docker
The Docker image [kxytechnologies/kxy](https://hub.docker.com/repository/docker/kxytechnologies/kxy) has been built for your convenience, and comes with anaconda, auto-sklearn, and the kxy package.
To start a Jupyter Notebook server from a sandboxed Docker environment, run
```Bash
docker run -i -t -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''"
```
where you should replace `<YOUR API KEY>` with your API key and navigate to [http://localhost:5555](http://localhost:5555) in your browser. This docker environment comes with [all examples available on the documentation website](https://www.kxy.ai/reference/latest/examples/).
To start a Jupyter Notebook server from an existing directory of notebooks, run
```Bash
docker run -i -t --mount src=</path/to/your/local/dir>,target=/opt/notebooks,type=bind -p 5555:8888 kxytechnologies/kxy:latest /bin/bash -c "kxy configure <YOUR API KEY> && /opt/conda/bin/jupyter notebook --notebook-dir=/opt/notebooks --ip='*' --port=8888 --no-browser --allow-root --NotebookApp.token=''"
```
where you should replace `</path/to/your/local/dir>` with the path to your local notebook folder and navigate to [http://localhost:5555](http://localhost:5555) in your browser.
You can also get the same Docker image from GitHub [here](https://github.com/kxytechnologies/kxy-python/pkgs/container/kxy-python).
## Other Programming Language
We plan to release friendly API client in more programming language.
In the meantime, you can directly issue requests to our [RESTFul API](https://www.kxy.ai/reference/latest/api/index.html) using your favorite programming language.
## Pricing
All API keys are given a free quota (a few dozen backend tasks) that should be enough to try out the package and see if you love it. Beyond the free quota you will be billed a small fee per task.
KXY is free for academic use; simply signup with your university email.
KXY is also free for Kaggle competitions; sign up and email kaggle@kxy.ai to get a promotional code.
%prep
%autosetup -n kxy-1.4.11
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-kxy -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 1.4.11-1
- Package Spec generated
|