1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
|
%global _empty_manifest_terminate_build 0
Name: python-langhuan
Version: 0.1.12
Release: 1
Summary: Language Human Annotation
License: Apache Software License 2.0
URL: https://github.com/raynardj/langhuan
Source0: https://mirrors.aliyun.com/pypi/web/packages/e9/ab/5bb42a04d5bb5d16d089fb90f3a621147c03c65f393528ca9c0fb1653e05/langhuan-0.1.12.tar.gz
BuildArch: noarch
%description
# LangHuAn
> **Lang**uage **Hu**man **An**notations, a frontend for tagging AI project labels, drived by pandas dataframe data.
> From Chinese word **琅嬛[langhuan]** (Legendary realm where god curates books)
Here's a [5 minutes youtube video](https://www.youtube.com/watch?v=Nwh6roiX_9I) explaining how langhuan works
[](https://www.youtube.com/watch?v=Nwh6roiX_9I)
## Installation
```shell
pip install langhuan
```
## Minimun configuration walk through
> langhuan start a flask application from **pandas dataframe** 🐼 !
### Simplest configuration for **NER** task 🚀
```python
from langhuan import NERTask
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"])
app.run("0.0.0.0", port=5000)
```
### Simplest configuration for **Classify** task 🚀
```python
from langhuan import ClassifyTask
app = ClassifyTask.from_df(
df, text_col="comment",
options=["positive", "negative", "unbiased", "not sure"])
app.run("0.0.0.0", port=5000)
```

## Frontend
> You can visit following pages for this app.
### Tagging
```http://[ip]:[port]/``` is for our hard working taggers to visit.
### Admin
```http://[ip]:[port]/admin``` is a page where you can 👮🏽♂️:
* See the progress of each user.
* Force save the progress, (or it will only save according to ```save_frequency```, default 42 entries)
* Download the tagged entries
## Advanced settings
#### Validation
You can set minimun verification number: ```cross_verify_num```, aka, how each entry will be validated, default is 1
If you set ```cross_verify_num``` to 2, and you have 5 taggers, each entry will be seen by 2 taggers
```python
app = ClassifyTask.from_df(
df, text_col="comment",
options=["positive", "negative", "unbiased", "not sure"],
cross_verify_num=2,)
```
#### Preset the tagging
You can set a column in dataframe, eg. called ```guessed_tags```, to preset the tagging result.
Each cell can contain the format of tagging result, eg.
```json
{"tags":[
{"text": "Genomicare Bio Tech", "offset":32, "label":"company"},
{"text": "East China University of Politic Science & Law", "offset":96, "label":"company"},
]}
```
Then you can run the app with preset tag column
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
preset_tag_col="guessed_tags")
app.run("0.0.0.0", port=5000)
```
#### Order strategy
The order of which text got tagged first is according to order_strategy.
Default is set to ```"forward_match"```, you can try ```pincer``` or ```trident```

Assume the order_by_column is set to the prediction of last batch of deep learning model:
- trident means the taggers tag the most confident positive, most confident negative, most unsure ones first.
#### Load History
If your service stopped, you can recover the progress from cache.
Previous cache will be at ```$HOME/.cache/langhuan/{task_name}```
You can change the save_frequency to suit your task, default is 42 entries.
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
save_frequency=128,
load_history=True,
task_name="task_NER_210123_110327"
)
```
#### Admin Control
> This application assumes internal use within organization, hence the mininum security. If you set admin_control, all the admin related page will require ```adminkey```, the key will appear in the console prompt
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
admin_control=True,
)
```
#### From downloaded data => pytorch dataset
> For downloaded NER data tags, you can create a dataloader with the json file automatically:
* [pytorch + huggingface tokenizer](https://raynardj.github.io/langhuan/docs/loader)
* tensorflow + huggingface tokenizer, development pending
#### Gunicorn support
This is a **light weight** solution. When move things to gunicorn, multithreads is acceptable, but multiworkers will cause chaos.
```shell
gunicorn --workers=1 --threads=5 app:app
```
## Compatibility 💍
Well, this library hasn't been tested vigorously against many browsers with many versions, so far
* compatible with chrome, firefox, safari if version not too old.
%package -n python3-langhuan
Summary: Language Human Annotation
Provides: python-langhuan
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-langhuan
# LangHuAn
> **Lang**uage **Hu**man **An**notations, a frontend for tagging AI project labels, drived by pandas dataframe data.
> From Chinese word **琅嬛[langhuan]** (Legendary realm where god curates books)
Here's a [5 minutes youtube video](https://www.youtube.com/watch?v=Nwh6roiX_9I) explaining how langhuan works
[](https://www.youtube.com/watch?v=Nwh6roiX_9I)
## Installation
```shell
pip install langhuan
```
## Minimun configuration walk through
> langhuan start a flask application from **pandas dataframe** 🐼 !
### Simplest configuration for **NER** task 🚀
```python
from langhuan import NERTask
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"])
app.run("0.0.0.0", port=5000)
```
### Simplest configuration for **Classify** task 🚀
```python
from langhuan import ClassifyTask
app = ClassifyTask.from_df(
df, text_col="comment",
options=["positive", "negative", "unbiased", "not sure"])
app.run("0.0.0.0", port=5000)
```

## Frontend
> You can visit following pages for this app.
### Tagging
```http://[ip]:[port]/``` is for our hard working taggers to visit.
### Admin
```http://[ip]:[port]/admin``` is a page where you can 👮🏽♂️:
* See the progress of each user.
* Force save the progress, (or it will only save according to ```save_frequency```, default 42 entries)
* Download the tagged entries
## Advanced settings
#### Validation
You can set minimun verification number: ```cross_verify_num```, aka, how each entry will be validated, default is 1
If you set ```cross_verify_num``` to 2, and you have 5 taggers, each entry will be seen by 2 taggers
```python
app = ClassifyTask.from_df(
df, text_col="comment",
options=["positive", "negative", "unbiased", "not sure"],
cross_verify_num=2,)
```
#### Preset the tagging
You can set a column in dataframe, eg. called ```guessed_tags```, to preset the tagging result.
Each cell can contain the format of tagging result, eg.
```json
{"tags":[
{"text": "Genomicare Bio Tech", "offset":32, "label":"company"},
{"text": "East China University of Politic Science & Law", "offset":96, "label":"company"},
]}
```
Then you can run the app with preset tag column
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
preset_tag_col="guessed_tags")
app.run("0.0.0.0", port=5000)
```
#### Order strategy
The order of which text got tagged first is according to order_strategy.
Default is set to ```"forward_match"```, you can try ```pincer``` or ```trident```

Assume the order_by_column is set to the prediction of last batch of deep learning model:
- trident means the taggers tag the most confident positive, most confident negative, most unsure ones first.
#### Load History
If your service stopped, you can recover the progress from cache.
Previous cache will be at ```$HOME/.cache/langhuan/{task_name}```
You can change the save_frequency to suit your task, default is 42 entries.
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
save_frequency=128,
load_history=True,
task_name="task_NER_210123_110327"
)
```
#### Admin Control
> This application assumes internal use within organization, hence the mininum security. If you set admin_control, all the admin related page will require ```adminkey```, the key will appear in the console prompt
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
admin_control=True,
)
```
#### From downloaded data => pytorch dataset
> For downloaded NER data tags, you can create a dataloader with the json file automatically:
* [pytorch + huggingface tokenizer](https://raynardj.github.io/langhuan/docs/loader)
* tensorflow + huggingface tokenizer, development pending
#### Gunicorn support
This is a **light weight** solution. When move things to gunicorn, multithreads is acceptable, but multiworkers will cause chaos.
```shell
gunicorn --workers=1 --threads=5 app:app
```
## Compatibility 💍
Well, this library hasn't been tested vigorously against many browsers with many versions, so far
* compatible with chrome, firefox, safari if version not too old.
%package help
Summary: Development documents and examples for langhuan
Provides: python3-langhuan-doc
%description help
# LangHuAn
> **Lang**uage **Hu**man **An**notations, a frontend for tagging AI project labels, drived by pandas dataframe data.
> From Chinese word **琅嬛[langhuan]** (Legendary realm where god curates books)
Here's a [5 minutes youtube video](https://www.youtube.com/watch?v=Nwh6roiX_9I) explaining how langhuan works
[](https://www.youtube.com/watch?v=Nwh6roiX_9I)
## Installation
```shell
pip install langhuan
```
## Minimun configuration walk through
> langhuan start a flask application from **pandas dataframe** 🐼 !
### Simplest configuration for **NER** task 🚀
```python
from langhuan import NERTask
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"])
app.run("0.0.0.0", port=5000)
```
### Simplest configuration for **Classify** task 🚀
```python
from langhuan import ClassifyTask
app = ClassifyTask.from_df(
df, text_col="comment",
options=["positive", "negative", "unbiased", "not sure"])
app.run("0.0.0.0", port=5000)
```

## Frontend
> You can visit following pages for this app.
### Tagging
```http://[ip]:[port]/``` is for our hard working taggers to visit.
### Admin
```http://[ip]:[port]/admin``` is a page where you can 👮🏽♂️:
* See the progress of each user.
* Force save the progress, (or it will only save according to ```save_frequency```, default 42 entries)
* Download the tagged entries
## Advanced settings
#### Validation
You can set minimun verification number: ```cross_verify_num```, aka, how each entry will be validated, default is 1
If you set ```cross_verify_num``` to 2, and you have 5 taggers, each entry will be seen by 2 taggers
```python
app = ClassifyTask.from_df(
df, text_col="comment",
options=["positive", "negative", "unbiased", "not sure"],
cross_verify_num=2,)
```
#### Preset the tagging
You can set a column in dataframe, eg. called ```guessed_tags```, to preset the tagging result.
Each cell can contain the format of tagging result, eg.
```json
{"tags":[
{"text": "Genomicare Bio Tech", "offset":32, "label":"company"},
{"text": "East China University of Politic Science & Law", "offset":96, "label":"company"},
]}
```
Then you can run the app with preset tag column
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
preset_tag_col="guessed_tags")
app.run("0.0.0.0", port=5000)
```
#### Order strategy
The order of which text got tagged first is according to order_strategy.
Default is set to ```"forward_match"```, you can try ```pincer``` or ```trident```

Assume the order_by_column is set to the prediction of last batch of deep learning model:
- trident means the taggers tag the most confident positive, most confident negative, most unsure ones first.
#### Load History
If your service stopped, you can recover the progress from cache.
Previous cache will be at ```$HOME/.cache/langhuan/{task_name}```
You can change the save_frequency to suit your task, default is 42 entries.
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
save_frequency=128,
load_history=True,
task_name="task_NER_210123_110327"
)
```
#### Admin Control
> This application assumes internal use within organization, hence the mininum security. If you set admin_control, all the admin related page will require ```adminkey```, the key will appear in the console prompt
```python
app = NERTask.from_df(
df, text_col="description",
options=["institution", "company", "name"],
admin_control=True,
)
```
#### From downloaded data => pytorch dataset
> For downloaded NER data tags, you can create a dataloader with the json file automatically:
* [pytorch + huggingface tokenizer](https://raynardj.github.io/langhuan/docs/loader)
* tensorflow + huggingface tokenizer, development pending
#### Gunicorn support
This is a **light weight** solution. When move things to gunicorn, multithreads is acceptable, but multiworkers will cause chaos.
```shell
gunicorn --workers=1 --threads=5 app:app
```
## Compatibility 💍
Well, this library hasn't been tested vigorously against many browsers with many versions, so far
* compatible with chrome, firefox, safari if version not too old.
%prep
%autosetup -n langhuan-0.1.12
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-langhuan -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue Jun 20 2023 Python_Bot <Python_Bot@openeuler.org> - 0.1.12-1
- Package Spec generated
|