summaryrefslogtreecommitdiff
path: root/python-lea.spec
blob: c50a5773038cff7e4c53769422cc0735827ca7ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
%global _empty_manifest_terminate_build 0
Name:		python-lea
Version:	3.4.4
Release:	1
Summary:	Discrete probability distributions in Python
License:	LGPL
URL:		http://bitbucket.org/piedenis/lea
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/88/1d/bcd296e04f93d15eed58959a3209256252c8d0265c02ab343afa6e71cb15/lea-3.4.4.tar.gz
BuildArch:	noarch


%description
Lea is a Python module aiming at working with discrete probability distributions in an intuitive way.

It allows you modeling a broad range of random phenomena: gambling, weather, finance, etc. More generally, Lea may be used for any finite set of discrete values having known probability: numbers, booleans, date/times, symbols,... Each probability distribution is modeled as a plain object, which can be named, displayed, queried or processed to produce new probability distributions.

Lea also provides advanced functions and Probabilistic Programming (PP) features; these include conditional probabilities, joint probability distributions, Bayesian networks, Markov chains and symbolic computation.

All probability calculations in Lea are performed by a new exact algorithm, the Statues algorithm, which is based on variable binding and recursive generators. For problems intractable through exact methods, Lea provides on-demand approximate algorithms, namely MC rejection sampling and likelihood weighting.

Beside the above-cited functions, Lea provides some machine learning functions, including Maximum-Likelihood and Expectation-Maximization algorithms.

Lea can be used for AI, education (probability theory & PP), generation of random samples, etc.

To install Lea 3.4.4, type the following command:
::

  pip install lea==3.4.4

Please go on Lea project page (beside) for a comprehensive documentation.

%package -n python3-lea
Summary:	Discrete probability distributions in Python
Provides:	python-lea
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-lea
Lea is a Python module aiming at working with discrete probability distributions in an intuitive way.

It allows you modeling a broad range of random phenomena: gambling, weather, finance, etc. More generally, Lea may be used for any finite set of discrete values having known probability: numbers, booleans, date/times, symbols,... Each probability distribution is modeled as a plain object, which can be named, displayed, queried or processed to produce new probability distributions.

Lea also provides advanced functions and Probabilistic Programming (PP) features; these include conditional probabilities, joint probability distributions, Bayesian networks, Markov chains and symbolic computation.

All probability calculations in Lea are performed by a new exact algorithm, the Statues algorithm, which is based on variable binding and recursive generators. For problems intractable through exact methods, Lea provides on-demand approximate algorithms, namely MC rejection sampling and likelihood weighting.

Beside the above-cited functions, Lea provides some machine learning functions, including Maximum-Likelihood and Expectation-Maximization algorithms.

Lea can be used for AI, education (probability theory & PP), generation of random samples, etc.

To install Lea 3.4.4, type the following command:
::

  pip install lea==3.4.4

Please go on Lea project page (beside) for a comprehensive documentation.

%package help
Summary:	Development documents and examples for lea
Provides:	python3-lea-doc
%description help
Lea is a Python module aiming at working with discrete probability distributions in an intuitive way.

It allows you modeling a broad range of random phenomena: gambling, weather, finance, etc. More generally, Lea may be used for any finite set of discrete values having known probability: numbers, booleans, date/times, symbols,... Each probability distribution is modeled as a plain object, which can be named, displayed, queried or processed to produce new probability distributions.

Lea also provides advanced functions and Probabilistic Programming (PP) features; these include conditional probabilities, joint probability distributions, Bayesian networks, Markov chains and symbolic computation.

All probability calculations in Lea are performed by a new exact algorithm, the Statues algorithm, which is based on variable binding and recursive generators. For problems intractable through exact methods, Lea provides on-demand approximate algorithms, namely MC rejection sampling and likelihood weighting.

Beside the above-cited functions, Lea provides some machine learning functions, including Maximum-Likelihood and Expectation-Maximization algorithms.

Lea can be used for AI, education (probability theory & PP), generation of random samples, etc.

To install Lea 3.4.4, type the following command:
::

  pip install lea==3.4.4

Please go on Lea project page (beside) for a comprehensive documentation.

%prep
%autosetup -n lea-3.4.4

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-lea -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Wed May 10 2023 Python_Bot <Python_Bot@openeuler.org> - 3.4.4-1
- Package Spec generated