1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
|
%global _empty_manifest_terminate_build 0
Name: python-Lifetimes
Version: 0.11.3
Release: 1
Summary: Measure customer lifetime value in Python
License: MIT
URL: https://github.com/CamDavidsonPilon/lifetimes
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b5/63/a3262c94c4773440369dca99c2202fb0ffe3b5cff7d07837ab8862219180/Lifetimes-0.11.3.tar.gz
BuildArch: noarch
Requires: python3-numpy
Requires: python3-scipy
Requires: python3-pandas
Requires: python3-autograd
Requires: python3-dill
%description

#### Measuring users is hard. Lifetimes makes it easy.
[](https://badge.fury.io/py/Lifetimes)
[](http://lifetimes.readthedocs.io/en/latest/?badge=latest)
[](https://travis-ci.org/CamDavidsonPilon/lifetimes)
[](https://coveralls.io/r/CamDavidsonPilon/lifetimes?branch=master)
## Introduction
Lifetimes can be used to analyze your users based on a few assumption:
1. Users interact with you when they are "alive".
2. Users under study may "die" after some period of time.
I've quoted "alive" and "die" as these are the most abstract terms: feel free to use your own definition of "alive" and "die" (they are used similarly to "birth" and "death" in survival analysis). Whenever we have individuals repeating occurrences, we can use Lifetimes to help understand user behaviour.
### Applications
If this is too abstract, consider these applications:
- Predicting how often a visitor will return to your website. (Alive = visiting. Die = decided the website wasn't for them)
- Understanding how frequently a patient may return to a hospital. (Alive = visiting. Die = maybe the patient moved to a new city, or became deceased.)
- Predicting individuals who have churned from an app using only their usage history. (Alive = logins. Die = removed the app)
- Predicting repeat purchases from a customer. (Alive = actively purchasing. Die = became disinterested with your product)
- Predicting the lifetime value of your customers
### Specific Application: Customer Lifetime Value
As emphasized by P. Fader and B. Hardie, understanding and acting on customer lifetime value (CLV) is the most important part of your business's sales efforts. [And (apparently) everyone is doing it wrong (Prof. Fader's Video Lecture)](https://www.youtube.com/watch?v=guj2gVEEx4s). *Lifetimes* is a Python library to calculate CLV for you.
## Installation
```bash
pip install lifetimes
```
## Contributing
Please refer to the [Contributing Guide](https://github.com/CamDavidsonPilon/lifetimes/blob/master/CONTRIBUTING.md) before creating any *Pull Requests*. It will make life easier for everyone.
## Documentation and tutorials
[Official documentation](http://lifetimes.readthedocs.io/en/latest/)
## Questions? Comments? Requests?
Please create an issue in the [lifetimes repository](https://github.com/CamDavidsonPilon/lifetimes).
## Main Articles
1. Probably, the seminal article of Non-Contractual CLV is [*Counting Your Customers: Who Are They and What Will They Do Next?*](https://www.jstor.org/stable/2631608?seq=1#page_scan_tab_contents), by David C. Schmittlein, Donald G. Morrison and Richard Colombo. Despite it being paid, it is worth the read. The relevant information will eventually end up in this library's documentation though.
1. The other (more recent) paper is [*“Counting Your Customers” the Easy Way:
An Alternative to the Pareto/NBD Model*](http://brucehardie.com/papers/018/fader_et_al_mksc_05.pdf), by Peter Fader, Bruce Hardie and Ka Lok Lee.
## More Information
1. [Roberto Medri](http://cdn.oreillystatic.com/en/assets/1/event/85/Case%20Study_%20What_s%20a%20Customer%20Worth_%20Presentation.pdf) did a nice presentation on CLV at Etsy.
1. [Papers](http://mktg.uni-svishtov.bg/ivm/resources/Counting_Your_Customers.pdf), lots of [papers](http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf).
1. R implementation is called [BTYD](http://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf) (*Buy 'Til You Die*).
1. [Bruce Hardie's Website](http://brucehardie.com/), especially his notes, is full of useful and essential explanations, many of which are featured in this library.
%package -n python3-Lifetimes
Summary: Measure customer lifetime value in Python
Provides: python-Lifetimes
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-Lifetimes

#### Measuring users is hard. Lifetimes makes it easy.
[](https://badge.fury.io/py/Lifetimes)
[](http://lifetimes.readthedocs.io/en/latest/?badge=latest)
[](https://travis-ci.org/CamDavidsonPilon/lifetimes)
[](https://coveralls.io/r/CamDavidsonPilon/lifetimes?branch=master)
## Introduction
Lifetimes can be used to analyze your users based on a few assumption:
1. Users interact with you when they are "alive".
2. Users under study may "die" after some period of time.
I've quoted "alive" and "die" as these are the most abstract terms: feel free to use your own definition of "alive" and "die" (they are used similarly to "birth" and "death" in survival analysis). Whenever we have individuals repeating occurrences, we can use Lifetimes to help understand user behaviour.
### Applications
If this is too abstract, consider these applications:
- Predicting how often a visitor will return to your website. (Alive = visiting. Die = decided the website wasn't for them)
- Understanding how frequently a patient may return to a hospital. (Alive = visiting. Die = maybe the patient moved to a new city, or became deceased.)
- Predicting individuals who have churned from an app using only their usage history. (Alive = logins. Die = removed the app)
- Predicting repeat purchases from a customer. (Alive = actively purchasing. Die = became disinterested with your product)
- Predicting the lifetime value of your customers
### Specific Application: Customer Lifetime Value
As emphasized by P. Fader and B. Hardie, understanding and acting on customer lifetime value (CLV) is the most important part of your business's sales efforts. [And (apparently) everyone is doing it wrong (Prof. Fader's Video Lecture)](https://www.youtube.com/watch?v=guj2gVEEx4s). *Lifetimes* is a Python library to calculate CLV for you.
## Installation
```bash
pip install lifetimes
```
## Contributing
Please refer to the [Contributing Guide](https://github.com/CamDavidsonPilon/lifetimes/blob/master/CONTRIBUTING.md) before creating any *Pull Requests*. It will make life easier for everyone.
## Documentation and tutorials
[Official documentation](http://lifetimes.readthedocs.io/en/latest/)
## Questions? Comments? Requests?
Please create an issue in the [lifetimes repository](https://github.com/CamDavidsonPilon/lifetimes).
## Main Articles
1. Probably, the seminal article of Non-Contractual CLV is [*Counting Your Customers: Who Are They and What Will They Do Next?*](https://www.jstor.org/stable/2631608?seq=1#page_scan_tab_contents), by David C. Schmittlein, Donald G. Morrison and Richard Colombo. Despite it being paid, it is worth the read. The relevant information will eventually end up in this library's documentation though.
1. The other (more recent) paper is [*“Counting Your Customers” the Easy Way:
An Alternative to the Pareto/NBD Model*](http://brucehardie.com/papers/018/fader_et_al_mksc_05.pdf), by Peter Fader, Bruce Hardie and Ka Lok Lee.
## More Information
1. [Roberto Medri](http://cdn.oreillystatic.com/en/assets/1/event/85/Case%20Study_%20What_s%20a%20Customer%20Worth_%20Presentation.pdf) did a nice presentation on CLV at Etsy.
1. [Papers](http://mktg.uni-svishtov.bg/ivm/resources/Counting_Your_Customers.pdf), lots of [papers](http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf).
1. R implementation is called [BTYD](http://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf) (*Buy 'Til You Die*).
1. [Bruce Hardie's Website](http://brucehardie.com/), especially his notes, is full of useful and essential explanations, many of which are featured in this library.
%package help
Summary: Development documents and examples for Lifetimes
Provides: python3-Lifetimes-doc
%description help

#### Measuring users is hard. Lifetimes makes it easy.
[](https://badge.fury.io/py/Lifetimes)
[](http://lifetimes.readthedocs.io/en/latest/?badge=latest)
[](https://travis-ci.org/CamDavidsonPilon/lifetimes)
[](https://coveralls.io/r/CamDavidsonPilon/lifetimes?branch=master)
## Introduction
Lifetimes can be used to analyze your users based on a few assumption:
1. Users interact with you when they are "alive".
2. Users under study may "die" after some period of time.
I've quoted "alive" and "die" as these are the most abstract terms: feel free to use your own definition of "alive" and "die" (they are used similarly to "birth" and "death" in survival analysis). Whenever we have individuals repeating occurrences, we can use Lifetimes to help understand user behaviour.
### Applications
If this is too abstract, consider these applications:
- Predicting how often a visitor will return to your website. (Alive = visiting. Die = decided the website wasn't for them)
- Understanding how frequently a patient may return to a hospital. (Alive = visiting. Die = maybe the patient moved to a new city, or became deceased.)
- Predicting individuals who have churned from an app using only their usage history. (Alive = logins. Die = removed the app)
- Predicting repeat purchases from a customer. (Alive = actively purchasing. Die = became disinterested with your product)
- Predicting the lifetime value of your customers
### Specific Application: Customer Lifetime Value
As emphasized by P. Fader and B. Hardie, understanding and acting on customer lifetime value (CLV) is the most important part of your business's sales efforts. [And (apparently) everyone is doing it wrong (Prof. Fader's Video Lecture)](https://www.youtube.com/watch?v=guj2gVEEx4s). *Lifetimes* is a Python library to calculate CLV for you.
## Installation
```bash
pip install lifetimes
```
## Contributing
Please refer to the [Contributing Guide](https://github.com/CamDavidsonPilon/lifetimes/blob/master/CONTRIBUTING.md) before creating any *Pull Requests*. It will make life easier for everyone.
## Documentation and tutorials
[Official documentation](http://lifetimes.readthedocs.io/en/latest/)
## Questions? Comments? Requests?
Please create an issue in the [lifetimes repository](https://github.com/CamDavidsonPilon/lifetimes).
## Main Articles
1. Probably, the seminal article of Non-Contractual CLV is [*Counting Your Customers: Who Are They and What Will They Do Next?*](https://www.jstor.org/stable/2631608?seq=1#page_scan_tab_contents), by David C. Schmittlein, Donald G. Morrison and Richard Colombo. Despite it being paid, it is worth the read. The relevant information will eventually end up in this library's documentation though.
1. The other (more recent) paper is [*“Counting Your Customers” the Easy Way:
An Alternative to the Pareto/NBD Model*](http://brucehardie.com/papers/018/fader_et_al_mksc_05.pdf), by Peter Fader, Bruce Hardie and Ka Lok Lee.
## More Information
1. [Roberto Medri](http://cdn.oreillystatic.com/en/assets/1/event/85/Case%20Study_%20What_s%20a%20Customer%20Worth_%20Presentation.pdf) did a nice presentation on CLV at Etsy.
1. [Papers](http://mktg.uni-svishtov.bg/ivm/resources/Counting_Your_Customers.pdf), lots of [papers](http://brucehardie.com/notes/009/pareto_nbd_derivations_2005-11-05.pdf).
1. R implementation is called [BTYD](http://cran.r-project.org/web/packages/BTYD/vignettes/BTYD-walkthrough.pdf) (*Buy 'Til You Die*).
1. [Bruce Hardie's Website](http://brucehardie.com/), especially his notes, is full of useful and essential explanations, many of which are featured in this library.
%prep
%autosetup -n Lifetimes-0.11.3
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-Lifetimes -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri Apr 21 2023 Python_Bot <Python_Bot@openeuler.org> - 0.11.3-1
- Package Spec generated
|