summaryrefslogtreecommitdiff
path: root/python-light-famd.spec
blob: 1b85b56920344afbbe206ba85d51c18ee7b31e78 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
%global _empty_manifest_terminate_build 0
Name:		python-light-famd
Version:	0.0.3
Release:	1
Summary:	Light Factor Analysis of Mixed Data
License:	BSD License
URL:		https://github.com/Cauchemare/Light_FAMD
Source0:	https://mirrors.aliyun.com/pypi/web/packages/9e/f0/60e56c2e3c00e33cfeab5d54dfdb917fa960fd8d178fb57be1320af7010b/light_famd-0.0.3.tar.gz
BuildArch:	noarch

Requires:	python3-scikit-learn
Requires:	python3-scipy
Requires:	python3-pandas
Requires:	python3-numpy

%description

# Light_FAMD

`Light_FAMD` is a library for prcessing [factor analysis of mixed data](https://www.wikiwand.com/en/Factor_analysis). This includes a variety of methods including [principal component analysis (PCA)](https://www.wikiwand.com/en/Principal_component_analysis) and [multiply correspondence analysis (MCA)](https://www.researchgate.net/publication/239542271_Multiple_Correspondence_Analysis). The goal is to provide an efficient and light implementation for each algorithm along with a scikit-learn API.

## Table of contents

- [Usage](##Usage)
  - [Guidelines](###Guidelines)
  - [Principal component analysis (PCA)](#principal-component-analysis-pca)
  - [Correspondence analysis (CA)](#correspondence-analysis-ca)
  - [Multiple correspondence analysis (MCA)](#multiple-correspondence-analysis-mca)
  - [Multiple factor analysis (MFA)](#multiple-factor-analysis-mfa)
  - [Factor analysis of mixed data (FAMD)](#factor-analysis-of-mixed-data-famd)
- [Going faster](#going-faster)




`Light_FAMD` doesn't have any extra dependencies apart from the usual suspects (`sklearn`, `pandas`, `numpy`) which are included with Anaconda.



### Guidelines

Each base estimator(CA,PCA) provided by `Light_FAMD` extends scikit-learn's `(TransformerMixin,BaseEstimator)`.which means we could use directly `fit_transform`,and `(set_params,get_params)` methods.

Under the hood `Light_FAMD` uses a [randomised version of SVD](https://scikit-learn.org/dev/modules/generated/sklearn.utils.extmath.randomized_svd.html). This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, n_iter can be set <=2 (at the cost of loss of precision). However if you want reproducible results then you should set the `random_state` parameter.

The randomised version of SVD is an iterative method. Because each of light_famd's algorithms use SVD, they all possess a `n_iter` parameter which controls the number of iterations used for computing the SVD. On the one hand the higher `n_iter` is the more precise the results will be. On the other hand increasing `n_iter` increases the computation time. In general the algorithm converges very quickly so using a low `n_iter` (which is the default behaviour) is recommended.

In this package,inheritance relationship as shown  below(A->B:A is superclass of B):

- PCA -> MFA -> FAMD
- CA ->MCA

You are supposed to use each method depending on your situation:

- All your variables are numeric: use principal component analysis (`PCA`)
- You have a contingency table: use correspondence analysis (`CA`)
- You have more than 2 variables and they are all categorical: use multiple correspondence analysis (`MCA`)
- You have groups of categorical **or** numerical variables: use multiple factor analysis (`MFA`)
- You have both categorical and numerical variables: use factor analysis of mixed data (`FAMD`)

The next subsections give an overview of each method along with usage information. The following papers give a good overview of the field of factor analysis if you want to go deeper:

- [A Tutorial on Principal Component Analysis](https://arxiv.org/pdf/1404.1100.pdf)
- [Theory of Correspondence Analysis](http://statmath.wu.ac.at/courses/CAandRelMeth/caipA.pdf)
- [Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions](https://arxiv.org/pdf/0909.4061.pdf)
- [Computation of Multiple Correspondence Analysis, with code in R](https://core.ac.uk/download/pdf/6591520.pdf)
- [Singular Value Decomposition Tutorial](https://davetang.org/file/Singular_Value_Decomposition_Tutorial.pdf)
- [Multiple Factor Analysis](https://www.utdallas.edu/~herve/Abdi-MFA2007-pretty.pdf)

Notice that `Light_FAMD` does't support the sparse input,see [Truncated_FAMD](https://github.com/Cauchemare/Truncated_FAMD) for an alternative of sparse and big data.


###	Principal-Component-Analysis: PCA

**PCA**(rescale_with_mean=True, rescale_with_std=True, n_components=2, n_iter=3,
                 copy=True, check_input=True, random_state=None, engine='auto'):

**Args:**
- `rescale_with_mean` (bool): Whether to substract each column's mean or not.
- `rescale_with_std` (bool): Whether to divide each column by it's standard deviation or not.
- `n_components` (int): The number of principal components to compute.
- `n_iter` (int): The number of iterations used for computing the SVD.
- `copy` (bool): Whether to perform the computations inplace or not.
- `check_input` (bool): Whether to check the consistency of the inputs or not.
- `engine`(string):"auto":randomized_svd,"fbpca":Facebook's randomized SVD implementation
- `random_state`(int, RandomState instance or None, optional (default=None):The seed of the -pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Return ndarray (M,k),M:Number of samples,K:Number of components.

**Examples:**
```
>>>import numpy as np
>>> np.random.seed(42)  # This is for doctests reproducibility

>>>from light_famd  import PCA
>>>X = pd.DataFrame(np.random.randint(0,10,size=(10,3)),columns=list('ABC'))
>>>pca = PCA(n_components=2)
>>>pca.fit(X)
PCA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=3,
  random_state=None, rescale_with_mean=True, rescale_with_std=True)

>>>print(pca.explained_variance_)
[20.20385109  8.48246239]

>>>print(pca.explained_variance_ratio_)
[0.6734617029875277, 0.28274874633810754]
>>>print(pca.column_correlation(X))  # pearson correlation between component and  original column,while p-value >=0.05 this similarity is `Nan`.
          0        1
A -0.953482      NaN
B  0.907314      NaN
C       NaN  0.84211

>>>print(pca.transform(X))
[[-0.82262005  0.11730656]
 [ 0.05359079  1.62298683]
 [ 1.03052849  0.79973099]
 [-0.24313366  0.25651395]
 [-0.94630387 -1.04943025]
 [-0.70591749 -0.01282583]
 [-0.39948373 -1.52612436]
 [ 2.70164194  0.38048482]
 [-2.49373351  0.53655273]
 [ 1.8254311  -1.12519545]]
>>>print(pca.fit_transform(X))
[[-0.82262005  0.11730656]
 [ 0.05359079  1.62298683]
 [ 1.03052849  0.79973099]
 [-0.24313366  0.25651395]
 [-0.94630387 -1.04943025]
 [-0.70591749 -0.01282583]
 [-0.39948373 -1.52612436]
 [ 2.70164194  0.38048482]
 [-2.49373351  0.53655273]
 [ 1.8254311  -1.12519545]]

```
###	Correspondence-Analysis: CA

**CA**(n_components=2, n_iter=10, copy=True, check_input=True, random_state=None,
                 engine='auto'):

**Args:**
- `n_components` (int): The number of principal components to compute.
- `copy` (bool): Whether to perform the computations inplace or not.
- `check_input` (bool): Whether to check the consistency of the inputs or not.
- `engine`(string):"auto":randomized_svd,"fbpca":Facebook's randomized SVD implementation
- `random_state`(int, RandomState instance or None, optional (default=None):The seed of the -pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

Return ndarray (M,k),M:Number of samples,K:Number of components.

**Examples:**
```
>>>import numpy as np
>>>from light_famd import CA
>>>X  = pd.DataFrame(data=np.random.randint(0,100,size=(10,4)),columns=list('ABCD'))
>>>ca=CA(n_components=2,n_iter=2)
>>>ca.fit(X)
CA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=2,
  random_state=None)

>>> print(ca.explained_variance_)
[0.16892141 0.0746376 ]

>>>print(ca.explained_variance_ratio_)
[0.5650580210934917, 0.2496697790527281]

>>>print(ca.transform(X))
[[ 0.23150854 -0.39167802]
 [ 0.36006095  0.00301414]
 [-0.48192602 -0.13002647]
 [-0.06333533 -0.21475652]
 [-0.16438708 -0.10418312]
 [-0.38129126 -0.16515196]
 [ 0.2721296   0.46923757]
 [ 0.82953753  0.20638333]
 [-0.500007    0.36897935]
 [ 0.57932474 -0.1023383 ]]

>>>print(ca.fit_transform(X))
[[ 0.23150854 -0.39167802]
 [ 0.36006095  0.00301414]
 [-0.48192602 -0.13002647]
 [-0.06333533 -0.21475652]
 [-0.16438708 -0.10418312]
 [-0.38129126 -0.16515196]
 [ 0.2721296   0.46923757]
 [ 0.82953753  0.20638333]
 [-0.500007    0.36897935]
 [ 0.57932474 -0.1023383 ]]
```

###	Multiple-Correspondence-Analysis: MCA
MCA class inherits from  CA  class.

```
>>>import pandas as pd
>>>from light_famd import MCA
>>>X=pd.DataFrame(np.random.choice(list('abcde'),size=(10,4),replace=True),columns =list('ABCD'))
>>>print(X)
      A  B  C  D
0  d  e  a  d
1  e  d  b  b
2  e  d  a  e
3  b  b  e  d
4  b  d  b  b
5  c  b  a  e
6  e  d  b  a
7  d  c  d  d
8  b  c  d  a
9  a  e  c  c
>>>mca=MCA(n_components=2)
>>>mca.fit(X)
MCA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=10,
  random_state=None)

>>>print(mca.explained_variance_)
[0.90150495 0.76979456]

>>>print(mca.explained_variance_ratio_)
[0.24040131974598467, 0.20527854948955893]

>>>print(mca.transform(X)) 
[[ 0.55603013  0.7016272 ]
 [-0.73558629 -1.17559462]
 [-0.44972794 -0.4973024 ]
 [-0.16248444  0.95706908]
 [-0.66969377 -0.79951057]
 [-0.21267777  0.39953562]
 [-0.67921667 -0.8707747 ]
 [ 0.05058625  1.34573057]
 [-0.31952341  0.77285922]
 [ 2.62229391 -0.83363941]]

>>>print(mca.fit_transform(X)) 
[[ 0.55603013  0.7016272 ]
 [-0.73558629 -1.17559462]
 [-0.44972794 -0.4973024 ]
 [-0.16248444  0.95706908]
 [-0.66969377 -0.79951057]
 [-0.21267777  0.39953562]
 [-0.67921667 -0.8707747 ]
 [ 0.05058625  1.34573057]
 [-0.31952341  0.77285922]
 [ 2.62229391 -0.83363941]]

```
###	Multiple-Factor-Analysis: MFA
MFA class inherits from  PCA  class.
Since FAMD class inherits from  MFA and the only thing to do for FAMD is to determine `groups` parameter compare to its  superclass `MFA`.therefore we skip this chapiter and go directly to `FAMD`.


###	Factor-Analysis-of-Mixed-Data: FAMD
The `FAMD` inherits from the `MFA` class, which entails that you have access to all it's methods and properties of `MFA` class.
```
>>>import pandas as pd
>>>from light_famd import FAMD
>>>X_n = pd.DataFrame(data=np.random.randint(0,100,size=(10,2)),columns=list('AB'))
>>>X_c =pd.DataFrame(np.random.choice(list('abcde'),size=(10,4),replace=True),columns =list('CDEF'))
>>>X=pd.concat([X_n,X_c],axis=1)
>>>print(X)
        A   B  C  D  E  F
0  96  19  b  d  b  e
1  11  46  b  d  a  e
2   0  89  a  a  a  c
3  13  63  c  a  e  d
4  37  36  d  b  e  c
5  10  99  a  b  d  c
6  76   2  c  a  d  e
7  32   5  c  a  e  d
8  49   9  c  e  e  e
9   4  22  c  c  b  d

>>>famd = FAMD(n_components=2)
>>>famd.fit(X)
MCA PROCESS MCA PROCESS ELIMINATED 0  COLUMNS SINCE THEIR MISS_RATES >= 99%
Out:
FAMD(check_input=True, copy=False, engine='auto', n_components=2, n_iter=2,
     random_state=None)

>>>print(famd.explained_variance_)
[17.40871219  9.73440949]

>>>print(famd.explained_variance_ratio_)
[0.32596621039327284, 0.1822701494502082]

>>> print(famd.column_correlation(X))
             0         1
A         NaN       NaN
B         NaN       NaN
C_a       NaN       NaN
C_b       NaN  0.824458
C_c  0.922220       NaN
C_d       NaN       NaN
D_a       NaN       NaN
D_b       NaN       NaN
D_c       NaN       NaN
D_d       NaN  0.824458
D_e       NaN       NaN
E_a       NaN       NaN
E_b       NaN       NaN
E_d       NaN       NaN
E_e       NaN       NaN
F_c       NaN -0.714447
F_d  0.673375       NaN
F_e       NaN  0.839324



>>>print(famd.transform(X)) 
[[ 2.23848136  5.75809647]
 [ 2.0845175   4.78930072]
 [ 2.6682068  -2.78991262]
 [ 6.2962962  -1.57451325]
 [ 2.52140085 -3.28279729]
 [ 1.58256681 -3.73135011]
 [ 5.19476759  1.18333717]
 [ 6.35288446 -1.33186723]
 [ 5.02971134  1.6216402 ]
 [ 4.05754963  0.69620997]]

>>>print(famd.fit_transform(X))
MCA PROCESS HAVE ELIMINATE 0  COLUMNS SINCE ITS MISSING RATE >= 99%
[[ 2.23848136  5.75809647]
 [ 2.0845175   4.78930072]
 [ 2.6682068  -2.78991262]
 [ 6.2962962  -1.57451325]
 [ 2.52140085 -3.28279729]
 [ 1.58256681 -3.73135011]
 [ 5.19476759  1.18333717]
 [ 6.35288446 -1.33186723]
 [ 5.02971134  1.6216402 ]
 [ 4.05754963  0.69620997]]

```




## Going faster

By default `light_famd` uses `sklearn`'s randomized SVD implementation. One of the goals of `Light_FAMD` is to make it possible to use a different SVD backend. For the while the only other supported backend is [Facebook's randomized SVD implementation](https://research.facebook.com/blog/fast-randomized-svd/) called [fbpca](http://fbpca.readthedocs.org/en/latest/). You can use it by setting the `engine` parameter to `'fbpca'` or see [Truncated_FAMD](https://github.com/Cauchemare/Truncated_FAMD) for an alternative of automatic selection of svd_solver depends on the structure of input:

```python
>>> import Light_FAMD
>>> pca = Light_FAMD.PCA(engine='fbpca')

```





%package -n python3-light-famd
Summary:	Light Factor Analysis of Mixed Data
Provides:	python-light-famd
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-light-famd

# Light_FAMD

`Light_FAMD` is a library for prcessing [factor analysis of mixed data](https://www.wikiwand.com/en/Factor_analysis). This includes a variety of methods including [principal component analysis (PCA)](https://www.wikiwand.com/en/Principal_component_analysis) and [multiply correspondence analysis (MCA)](https://www.researchgate.net/publication/239542271_Multiple_Correspondence_Analysis). The goal is to provide an efficient and light implementation for each algorithm along with a scikit-learn API.

## Table of contents

- [Usage](##Usage)
  - [Guidelines](###Guidelines)
  - [Principal component analysis (PCA)](#principal-component-analysis-pca)
  - [Correspondence analysis (CA)](#correspondence-analysis-ca)
  - [Multiple correspondence analysis (MCA)](#multiple-correspondence-analysis-mca)
  - [Multiple factor analysis (MFA)](#multiple-factor-analysis-mfa)
  - [Factor analysis of mixed data (FAMD)](#factor-analysis-of-mixed-data-famd)
- [Going faster](#going-faster)




`Light_FAMD` doesn't have any extra dependencies apart from the usual suspects (`sklearn`, `pandas`, `numpy`) which are included with Anaconda.



### Guidelines

Each base estimator(CA,PCA) provided by `Light_FAMD` extends scikit-learn's `(TransformerMixin,BaseEstimator)`.which means we could use directly `fit_transform`,and `(set_params,get_params)` methods.

Under the hood `Light_FAMD` uses a [randomised version of SVD](https://scikit-learn.org/dev/modules/generated/sklearn.utils.extmath.randomized_svd.html). This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, n_iter can be set <=2 (at the cost of loss of precision). However if you want reproducible results then you should set the `random_state` parameter.

The randomised version of SVD is an iterative method. Because each of light_famd's algorithms use SVD, they all possess a `n_iter` parameter which controls the number of iterations used for computing the SVD. On the one hand the higher `n_iter` is the more precise the results will be. On the other hand increasing `n_iter` increases the computation time. In general the algorithm converges very quickly so using a low `n_iter` (which is the default behaviour) is recommended.

In this package,inheritance relationship as shown  below(A->B:A is superclass of B):

- PCA -> MFA -> FAMD
- CA ->MCA

You are supposed to use each method depending on your situation:

- All your variables are numeric: use principal component analysis (`PCA`)
- You have a contingency table: use correspondence analysis (`CA`)
- You have more than 2 variables and they are all categorical: use multiple correspondence analysis (`MCA`)
- You have groups of categorical **or** numerical variables: use multiple factor analysis (`MFA`)
- You have both categorical and numerical variables: use factor analysis of mixed data (`FAMD`)

The next subsections give an overview of each method along with usage information. The following papers give a good overview of the field of factor analysis if you want to go deeper:

- [A Tutorial on Principal Component Analysis](https://arxiv.org/pdf/1404.1100.pdf)
- [Theory of Correspondence Analysis](http://statmath.wu.ac.at/courses/CAandRelMeth/caipA.pdf)
- [Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions](https://arxiv.org/pdf/0909.4061.pdf)
- [Computation of Multiple Correspondence Analysis, with code in R](https://core.ac.uk/download/pdf/6591520.pdf)
- [Singular Value Decomposition Tutorial](https://davetang.org/file/Singular_Value_Decomposition_Tutorial.pdf)
- [Multiple Factor Analysis](https://www.utdallas.edu/~herve/Abdi-MFA2007-pretty.pdf)

Notice that `Light_FAMD` does't support the sparse input,see [Truncated_FAMD](https://github.com/Cauchemare/Truncated_FAMD) for an alternative of sparse and big data.


###	Principal-Component-Analysis: PCA

**PCA**(rescale_with_mean=True, rescale_with_std=True, n_components=2, n_iter=3,
                 copy=True, check_input=True, random_state=None, engine='auto'):

**Args:**
- `rescale_with_mean` (bool): Whether to substract each column's mean or not.
- `rescale_with_std` (bool): Whether to divide each column by it's standard deviation or not.
- `n_components` (int): The number of principal components to compute.
- `n_iter` (int): The number of iterations used for computing the SVD.
- `copy` (bool): Whether to perform the computations inplace or not.
- `check_input` (bool): Whether to check the consistency of the inputs or not.
- `engine`(string):"auto":randomized_svd,"fbpca":Facebook's randomized SVD implementation
- `random_state`(int, RandomState instance or None, optional (default=None):The seed of the -pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Return ndarray (M,k),M:Number of samples,K:Number of components.

**Examples:**
```
>>>import numpy as np
>>> np.random.seed(42)  # This is for doctests reproducibility

>>>from light_famd  import PCA
>>>X = pd.DataFrame(np.random.randint(0,10,size=(10,3)),columns=list('ABC'))
>>>pca = PCA(n_components=2)
>>>pca.fit(X)
PCA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=3,
  random_state=None, rescale_with_mean=True, rescale_with_std=True)

>>>print(pca.explained_variance_)
[20.20385109  8.48246239]

>>>print(pca.explained_variance_ratio_)
[0.6734617029875277, 0.28274874633810754]
>>>print(pca.column_correlation(X))  # pearson correlation between component and  original column,while p-value >=0.05 this similarity is `Nan`.
          0        1
A -0.953482      NaN
B  0.907314      NaN
C       NaN  0.84211

>>>print(pca.transform(X))
[[-0.82262005  0.11730656]
 [ 0.05359079  1.62298683]
 [ 1.03052849  0.79973099]
 [-0.24313366  0.25651395]
 [-0.94630387 -1.04943025]
 [-0.70591749 -0.01282583]
 [-0.39948373 -1.52612436]
 [ 2.70164194  0.38048482]
 [-2.49373351  0.53655273]
 [ 1.8254311  -1.12519545]]
>>>print(pca.fit_transform(X))
[[-0.82262005  0.11730656]
 [ 0.05359079  1.62298683]
 [ 1.03052849  0.79973099]
 [-0.24313366  0.25651395]
 [-0.94630387 -1.04943025]
 [-0.70591749 -0.01282583]
 [-0.39948373 -1.52612436]
 [ 2.70164194  0.38048482]
 [-2.49373351  0.53655273]
 [ 1.8254311  -1.12519545]]

```
###	Correspondence-Analysis: CA

**CA**(n_components=2, n_iter=10, copy=True, check_input=True, random_state=None,
                 engine='auto'):

**Args:**
- `n_components` (int): The number of principal components to compute.
- `copy` (bool): Whether to perform the computations inplace or not.
- `check_input` (bool): Whether to check the consistency of the inputs or not.
- `engine`(string):"auto":randomized_svd,"fbpca":Facebook's randomized SVD implementation
- `random_state`(int, RandomState instance or None, optional (default=None):The seed of the -pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

Return ndarray (M,k),M:Number of samples,K:Number of components.

**Examples:**
```
>>>import numpy as np
>>>from light_famd import CA
>>>X  = pd.DataFrame(data=np.random.randint(0,100,size=(10,4)),columns=list('ABCD'))
>>>ca=CA(n_components=2,n_iter=2)
>>>ca.fit(X)
CA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=2,
  random_state=None)

>>> print(ca.explained_variance_)
[0.16892141 0.0746376 ]

>>>print(ca.explained_variance_ratio_)
[0.5650580210934917, 0.2496697790527281]

>>>print(ca.transform(X))
[[ 0.23150854 -0.39167802]
 [ 0.36006095  0.00301414]
 [-0.48192602 -0.13002647]
 [-0.06333533 -0.21475652]
 [-0.16438708 -0.10418312]
 [-0.38129126 -0.16515196]
 [ 0.2721296   0.46923757]
 [ 0.82953753  0.20638333]
 [-0.500007    0.36897935]
 [ 0.57932474 -0.1023383 ]]

>>>print(ca.fit_transform(X))
[[ 0.23150854 -0.39167802]
 [ 0.36006095  0.00301414]
 [-0.48192602 -0.13002647]
 [-0.06333533 -0.21475652]
 [-0.16438708 -0.10418312]
 [-0.38129126 -0.16515196]
 [ 0.2721296   0.46923757]
 [ 0.82953753  0.20638333]
 [-0.500007    0.36897935]
 [ 0.57932474 -0.1023383 ]]
```

###	Multiple-Correspondence-Analysis: MCA
MCA class inherits from  CA  class.

```
>>>import pandas as pd
>>>from light_famd import MCA
>>>X=pd.DataFrame(np.random.choice(list('abcde'),size=(10,4),replace=True),columns =list('ABCD'))
>>>print(X)
      A  B  C  D
0  d  e  a  d
1  e  d  b  b
2  e  d  a  e
3  b  b  e  d
4  b  d  b  b
5  c  b  a  e
6  e  d  b  a
7  d  c  d  d
8  b  c  d  a
9  a  e  c  c
>>>mca=MCA(n_components=2)
>>>mca.fit(X)
MCA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=10,
  random_state=None)

>>>print(mca.explained_variance_)
[0.90150495 0.76979456]

>>>print(mca.explained_variance_ratio_)
[0.24040131974598467, 0.20527854948955893]

>>>print(mca.transform(X)) 
[[ 0.55603013  0.7016272 ]
 [-0.73558629 -1.17559462]
 [-0.44972794 -0.4973024 ]
 [-0.16248444  0.95706908]
 [-0.66969377 -0.79951057]
 [-0.21267777  0.39953562]
 [-0.67921667 -0.8707747 ]
 [ 0.05058625  1.34573057]
 [-0.31952341  0.77285922]
 [ 2.62229391 -0.83363941]]

>>>print(mca.fit_transform(X)) 
[[ 0.55603013  0.7016272 ]
 [-0.73558629 -1.17559462]
 [-0.44972794 -0.4973024 ]
 [-0.16248444  0.95706908]
 [-0.66969377 -0.79951057]
 [-0.21267777  0.39953562]
 [-0.67921667 -0.8707747 ]
 [ 0.05058625  1.34573057]
 [-0.31952341  0.77285922]
 [ 2.62229391 -0.83363941]]

```
###	Multiple-Factor-Analysis: MFA
MFA class inherits from  PCA  class.
Since FAMD class inherits from  MFA and the only thing to do for FAMD is to determine `groups` parameter compare to its  superclass `MFA`.therefore we skip this chapiter and go directly to `FAMD`.


###	Factor-Analysis-of-Mixed-Data: FAMD
The `FAMD` inherits from the `MFA` class, which entails that you have access to all it's methods and properties of `MFA` class.
```
>>>import pandas as pd
>>>from light_famd import FAMD
>>>X_n = pd.DataFrame(data=np.random.randint(0,100,size=(10,2)),columns=list('AB'))
>>>X_c =pd.DataFrame(np.random.choice(list('abcde'),size=(10,4),replace=True),columns =list('CDEF'))
>>>X=pd.concat([X_n,X_c],axis=1)
>>>print(X)
        A   B  C  D  E  F
0  96  19  b  d  b  e
1  11  46  b  d  a  e
2   0  89  a  a  a  c
3  13  63  c  a  e  d
4  37  36  d  b  e  c
5  10  99  a  b  d  c
6  76   2  c  a  d  e
7  32   5  c  a  e  d
8  49   9  c  e  e  e
9   4  22  c  c  b  d

>>>famd = FAMD(n_components=2)
>>>famd.fit(X)
MCA PROCESS MCA PROCESS ELIMINATED 0  COLUMNS SINCE THEIR MISS_RATES >= 99%
Out:
FAMD(check_input=True, copy=False, engine='auto', n_components=2, n_iter=2,
     random_state=None)

>>>print(famd.explained_variance_)
[17.40871219  9.73440949]

>>>print(famd.explained_variance_ratio_)
[0.32596621039327284, 0.1822701494502082]

>>> print(famd.column_correlation(X))
             0         1
A         NaN       NaN
B         NaN       NaN
C_a       NaN       NaN
C_b       NaN  0.824458
C_c  0.922220       NaN
C_d       NaN       NaN
D_a       NaN       NaN
D_b       NaN       NaN
D_c       NaN       NaN
D_d       NaN  0.824458
D_e       NaN       NaN
E_a       NaN       NaN
E_b       NaN       NaN
E_d       NaN       NaN
E_e       NaN       NaN
F_c       NaN -0.714447
F_d  0.673375       NaN
F_e       NaN  0.839324



>>>print(famd.transform(X)) 
[[ 2.23848136  5.75809647]
 [ 2.0845175   4.78930072]
 [ 2.6682068  -2.78991262]
 [ 6.2962962  -1.57451325]
 [ 2.52140085 -3.28279729]
 [ 1.58256681 -3.73135011]
 [ 5.19476759  1.18333717]
 [ 6.35288446 -1.33186723]
 [ 5.02971134  1.6216402 ]
 [ 4.05754963  0.69620997]]

>>>print(famd.fit_transform(X))
MCA PROCESS HAVE ELIMINATE 0  COLUMNS SINCE ITS MISSING RATE >= 99%
[[ 2.23848136  5.75809647]
 [ 2.0845175   4.78930072]
 [ 2.6682068  -2.78991262]
 [ 6.2962962  -1.57451325]
 [ 2.52140085 -3.28279729]
 [ 1.58256681 -3.73135011]
 [ 5.19476759  1.18333717]
 [ 6.35288446 -1.33186723]
 [ 5.02971134  1.6216402 ]
 [ 4.05754963  0.69620997]]

```




## Going faster

By default `light_famd` uses `sklearn`'s randomized SVD implementation. One of the goals of `Light_FAMD` is to make it possible to use a different SVD backend. For the while the only other supported backend is [Facebook's randomized SVD implementation](https://research.facebook.com/blog/fast-randomized-svd/) called [fbpca](http://fbpca.readthedocs.org/en/latest/). You can use it by setting the `engine` parameter to `'fbpca'` or see [Truncated_FAMD](https://github.com/Cauchemare/Truncated_FAMD) for an alternative of automatic selection of svd_solver depends on the structure of input:

```python
>>> import Light_FAMD
>>> pca = Light_FAMD.PCA(engine='fbpca')

```





%package help
Summary:	Development documents and examples for light-famd
Provides:	python3-light-famd-doc
%description help

# Light_FAMD

`Light_FAMD` is a library for prcessing [factor analysis of mixed data](https://www.wikiwand.com/en/Factor_analysis). This includes a variety of methods including [principal component analysis (PCA)](https://www.wikiwand.com/en/Principal_component_analysis) and [multiply correspondence analysis (MCA)](https://www.researchgate.net/publication/239542271_Multiple_Correspondence_Analysis). The goal is to provide an efficient and light implementation for each algorithm along with a scikit-learn API.

## Table of contents

- [Usage](##Usage)
  - [Guidelines](###Guidelines)
  - [Principal component analysis (PCA)](#principal-component-analysis-pca)
  - [Correspondence analysis (CA)](#correspondence-analysis-ca)
  - [Multiple correspondence analysis (MCA)](#multiple-correspondence-analysis-mca)
  - [Multiple factor analysis (MFA)](#multiple-factor-analysis-mfa)
  - [Factor analysis of mixed data (FAMD)](#factor-analysis-of-mixed-data-famd)
- [Going faster](#going-faster)




`Light_FAMD` doesn't have any extra dependencies apart from the usual suspects (`sklearn`, `pandas`, `numpy`) which are included with Anaconda.



### Guidelines

Each base estimator(CA,PCA) provided by `Light_FAMD` extends scikit-learn's `(TransformerMixin,BaseEstimator)`.which means we could use directly `fit_transform`,and `(set_params,get_params)` methods.

Under the hood `Light_FAMD` uses a [randomised version of SVD](https://scikit-learn.org/dev/modules/generated/sklearn.utils.extmath.randomized_svd.html). This algorithm finds a (usually very good) approximate truncated singular value decomposition using randomization to speed up the computations. It is particularly fast on large matrices on which you wish to extract only a small number of components. In order to obtain further speed up, n_iter can be set <=2 (at the cost of loss of precision). However if you want reproducible results then you should set the `random_state` parameter.

The randomised version of SVD is an iterative method. Because each of light_famd's algorithms use SVD, they all possess a `n_iter` parameter which controls the number of iterations used for computing the SVD. On the one hand the higher `n_iter` is the more precise the results will be. On the other hand increasing `n_iter` increases the computation time. In general the algorithm converges very quickly so using a low `n_iter` (which is the default behaviour) is recommended.

In this package,inheritance relationship as shown  below(A->B:A is superclass of B):

- PCA -> MFA -> FAMD
- CA ->MCA

You are supposed to use each method depending on your situation:

- All your variables are numeric: use principal component analysis (`PCA`)
- You have a contingency table: use correspondence analysis (`CA`)
- You have more than 2 variables and they are all categorical: use multiple correspondence analysis (`MCA`)
- You have groups of categorical **or** numerical variables: use multiple factor analysis (`MFA`)
- You have both categorical and numerical variables: use factor analysis of mixed data (`FAMD`)

The next subsections give an overview of each method along with usage information. The following papers give a good overview of the field of factor analysis if you want to go deeper:

- [A Tutorial on Principal Component Analysis](https://arxiv.org/pdf/1404.1100.pdf)
- [Theory of Correspondence Analysis](http://statmath.wu.ac.at/courses/CAandRelMeth/caipA.pdf)
- [Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions](https://arxiv.org/pdf/0909.4061.pdf)
- [Computation of Multiple Correspondence Analysis, with code in R](https://core.ac.uk/download/pdf/6591520.pdf)
- [Singular Value Decomposition Tutorial](https://davetang.org/file/Singular_Value_Decomposition_Tutorial.pdf)
- [Multiple Factor Analysis](https://www.utdallas.edu/~herve/Abdi-MFA2007-pretty.pdf)

Notice that `Light_FAMD` does't support the sparse input,see [Truncated_FAMD](https://github.com/Cauchemare/Truncated_FAMD) for an alternative of sparse and big data.


###	Principal-Component-Analysis: PCA

**PCA**(rescale_with_mean=True, rescale_with_std=True, n_components=2, n_iter=3,
                 copy=True, check_input=True, random_state=None, engine='auto'):

**Args:**
- `rescale_with_mean` (bool): Whether to substract each column's mean or not.
- `rescale_with_std` (bool): Whether to divide each column by it's standard deviation or not.
- `n_components` (int): The number of principal components to compute.
- `n_iter` (int): The number of iterations used for computing the SVD.
- `copy` (bool): Whether to perform the computations inplace or not.
- `check_input` (bool): Whether to check the consistency of the inputs or not.
- `engine`(string):"auto":randomized_svd,"fbpca":Facebook's randomized SVD implementation
- `random_state`(int, RandomState instance or None, optional (default=None):The seed of the -pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.
Return ndarray (M,k),M:Number of samples,K:Number of components.

**Examples:**
```
>>>import numpy as np
>>> np.random.seed(42)  # This is for doctests reproducibility

>>>from light_famd  import PCA
>>>X = pd.DataFrame(np.random.randint(0,10,size=(10,3)),columns=list('ABC'))
>>>pca = PCA(n_components=2)
>>>pca.fit(X)
PCA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=3,
  random_state=None, rescale_with_mean=True, rescale_with_std=True)

>>>print(pca.explained_variance_)
[20.20385109  8.48246239]

>>>print(pca.explained_variance_ratio_)
[0.6734617029875277, 0.28274874633810754]
>>>print(pca.column_correlation(X))  # pearson correlation between component and  original column,while p-value >=0.05 this similarity is `Nan`.
          0        1
A -0.953482      NaN
B  0.907314      NaN
C       NaN  0.84211

>>>print(pca.transform(X))
[[-0.82262005  0.11730656]
 [ 0.05359079  1.62298683]
 [ 1.03052849  0.79973099]
 [-0.24313366  0.25651395]
 [-0.94630387 -1.04943025]
 [-0.70591749 -0.01282583]
 [-0.39948373 -1.52612436]
 [ 2.70164194  0.38048482]
 [-2.49373351  0.53655273]
 [ 1.8254311  -1.12519545]]
>>>print(pca.fit_transform(X))
[[-0.82262005  0.11730656]
 [ 0.05359079  1.62298683]
 [ 1.03052849  0.79973099]
 [-0.24313366  0.25651395]
 [-0.94630387 -1.04943025]
 [-0.70591749 -0.01282583]
 [-0.39948373 -1.52612436]
 [ 2.70164194  0.38048482]
 [-2.49373351  0.53655273]
 [ 1.8254311  -1.12519545]]

```
###	Correspondence-Analysis: CA

**CA**(n_components=2, n_iter=10, copy=True, check_input=True, random_state=None,
                 engine='auto'):

**Args:**
- `n_components` (int): The number of principal components to compute.
- `copy` (bool): Whether to perform the computations inplace or not.
- `check_input` (bool): Whether to check the consistency of the inputs or not.
- `engine`(string):"auto":randomized_svd,"fbpca":Facebook's randomized SVD implementation
- `random_state`(int, RandomState instance or None, optional (default=None):The seed of the -pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random.

Return ndarray (M,k),M:Number of samples,K:Number of components.

**Examples:**
```
>>>import numpy as np
>>>from light_famd import CA
>>>X  = pd.DataFrame(data=np.random.randint(0,100,size=(10,4)),columns=list('ABCD'))
>>>ca=CA(n_components=2,n_iter=2)
>>>ca.fit(X)
CA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=2,
  random_state=None)

>>> print(ca.explained_variance_)
[0.16892141 0.0746376 ]

>>>print(ca.explained_variance_ratio_)
[0.5650580210934917, 0.2496697790527281]

>>>print(ca.transform(X))
[[ 0.23150854 -0.39167802]
 [ 0.36006095  0.00301414]
 [-0.48192602 -0.13002647]
 [-0.06333533 -0.21475652]
 [-0.16438708 -0.10418312]
 [-0.38129126 -0.16515196]
 [ 0.2721296   0.46923757]
 [ 0.82953753  0.20638333]
 [-0.500007    0.36897935]
 [ 0.57932474 -0.1023383 ]]

>>>print(ca.fit_transform(X))
[[ 0.23150854 -0.39167802]
 [ 0.36006095  0.00301414]
 [-0.48192602 -0.13002647]
 [-0.06333533 -0.21475652]
 [-0.16438708 -0.10418312]
 [-0.38129126 -0.16515196]
 [ 0.2721296   0.46923757]
 [ 0.82953753  0.20638333]
 [-0.500007    0.36897935]
 [ 0.57932474 -0.1023383 ]]
```

###	Multiple-Correspondence-Analysis: MCA
MCA class inherits from  CA  class.

```
>>>import pandas as pd
>>>from light_famd import MCA
>>>X=pd.DataFrame(np.random.choice(list('abcde'),size=(10,4),replace=True),columns =list('ABCD'))
>>>print(X)
      A  B  C  D
0  d  e  a  d
1  e  d  b  b
2  e  d  a  e
3  b  b  e  d
4  b  d  b  b
5  c  b  a  e
6  e  d  b  a
7  d  c  d  d
8  b  c  d  a
9  a  e  c  c
>>>mca=MCA(n_components=2)
>>>mca.fit(X)
MCA(check_input=True, copy=True, engine='auto', n_components=2, n_iter=10,
  random_state=None)

>>>print(mca.explained_variance_)
[0.90150495 0.76979456]

>>>print(mca.explained_variance_ratio_)
[0.24040131974598467, 0.20527854948955893]

>>>print(mca.transform(X)) 
[[ 0.55603013  0.7016272 ]
 [-0.73558629 -1.17559462]
 [-0.44972794 -0.4973024 ]
 [-0.16248444  0.95706908]
 [-0.66969377 -0.79951057]
 [-0.21267777  0.39953562]
 [-0.67921667 -0.8707747 ]
 [ 0.05058625  1.34573057]
 [-0.31952341  0.77285922]
 [ 2.62229391 -0.83363941]]

>>>print(mca.fit_transform(X)) 
[[ 0.55603013  0.7016272 ]
 [-0.73558629 -1.17559462]
 [-0.44972794 -0.4973024 ]
 [-0.16248444  0.95706908]
 [-0.66969377 -0.79951057]
 [-0.21267777  0.39953562]
 [-0.67921667 -0.8707747 ]
 [ 0.05058625  1.34573057]
 [-0.31952341  0.77285922]
 [ 2.62229391 -0.83363941]]

```
###	Multiple-Factor-Analysis: MFA
MFA class inherits from  PCA  class.
Since FAMD class inherits from  MFA and the only thing to do for FAMD is to determine `groups` parameter compare to its  superclass `MFA`.therefore we skip this chapiter and go directly to `FAMD`.


###	Factor-Analysis-of-Mixed-Data: FAMD
The `FAMD` inherits from the `MFA` class, which entails that you have access to all it's methods and properties of `MFA` class.
```
>>>import pandas as pd
>>>from light_famd import FAMD
>>>X_n = pd.DataFrame(data=np.random.randint(0,100,size=(10,2)),columns=list('AB'))
>>>X_c =pd.DataFrame(np.random.choice(list('abcde'),size=(10,4),replace=True),columns =list('CDEF'))
>>>X=pd.concat([X_n,X_c],axis=1)
>>>print(X)
        A   B  C  D  E  F
0  96  19  b  d  b  e
1  11  46  b  d  a  e
2   0  89  a  a  a  c
3  13  63  c  a  e  d
4  37  36  d  b  e  c
5  10  99  a  b  d  c
6  76   2  c  a  d  e
7  32   5  c  a  e  d
8  49   9  c  e  e  e
9   4  22  c  c  b  d

>>>famd = FAMD(n_components=2)
>>>famd.fit(X)
MCA PROCESS MCA PROCESS ELIMINATED 0  COLUMNS SINCE THEIR MISS_RATES >= 99%
Out:
FAMD(check_input=True, copy=False, engine='auto', n_components=2, n_iter=2,
     random_state=None)

>>>print(famd.explained_variance_)
[17.40871219  9.73440949]

>>>print(famd.explained_variance_ratio_)
[0.32596621039327284, 0.1822701494502082]

>>> print(famd.column_correlation(X))
             0         1
A         NaN       NaN
B         NaN       NaN
C_a       NaN       NaN
C_b       NaN  0.824458
C_c  0.922220       NaN
C_d       NaN       NaN
D_a       NaN       NaN
D_b       NaN       NaN
D_c       NaN       NaN
D_d       NaN  0.824458
D_e       NaN       NaN
E_a       NaN       NaN
E_b       NaN       NaN
E_d       NaN       NaN
E_e       NaN       NaN
F_c       NaN -0.714447
F_d  0.673375       NaN
F_e       NaN  0.839324



>>>print(famd.transform(X)) 
[[ 2.23848136  5.75809647]
 [ 2.0845175   4.78930072]
 [ 2.6682068  -2.78991262]
 [ 6.2962962  -1.57451325]
 [ 2.52140085 -3.28279729]
 [ 1.58256681 -3.73135011]
 [ 5.19476759  1.18333717]
 [ 6.35288446 -1.33186723]
 [ 5.02971134  1.6216402 ]
 [ 4.05754963  0.69620997]]

>>>print(famd.fit_transform(X))
MCA PROCESS HAVE ELIMINATE 0  COLUMNS SINCE ITS MISSING RATE >= 99%
[[ 2.23848136  5.75809647]
 [ 2.0845175   4.78930072]
 [ 2.6682068  -2.78991262]
 [ 6.2962962  -1.57451325]
 [ 2.52140085 -3.28279729]
 [ 1.58256681 -3.73135011]
 [ 5.19476759  1.18333717]
 [ 6.35288446 -1.33186723]
 [ 5.02971134  1.6216402 ]
 [ 4.05754963  0.69620997]]

```




## Going faster

By default `light_famd` uses `sklearn`'s randomized SVD implementation. One of the goals of `Light_FAMD` is to make it possible to use a different SVD backend. For the while the only other supported backend is [Facebook's randomized SVD implementation](https://research.facebook.com/blog/fast-randomized-svd/) called [fbpca](http://fbpca.readthedocs.org/en/latest/). You can use it by setting the `engine` parameter to `'fbpca'` or see [Truncated_FAMD](https://github.com/Cauchemare/Truncated_FAMD) for an alternative of automatic selection of svd_solver depends on the structure of input:

```python
>>> import Light_FAMD
>>> pca = Light_FAMD.PCA(engine='fbpca')

```





%prep
%autosetup -n light_famd-0.0.3

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-light-famd -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.3-1
- Package Spec generated