summaryrefslogtreecommitdiff
path: root/python-lightfm.spec
blob: f35d7f4a240d2771297a38492c23a12b9484bf83 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
%global _empty_manifest_terminate_build 0
Name:		python-lightfm
Version:	1.17
Release:	1
Summary:	LightFM recommendation model
License:	MIT
URL:		https://github.com/lyst/lightfm
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/1f/96/5ec230f5c27811534af0faaa8525f11c1000ee1c24c8a82c0546d0724aea/lightfm-1.17.tar.gz
BuildArch:	noarch


%description
# LightFM

![LightFM logo](lightfm.png)

| Build status | |
|---|---|
| Linux |[![Circle CI](https://circleci.com/gh/lyst/lightfm.svg?style=svg)](https://circleci.com/gh/lyst/lightfm)|
| OSX (OpenMP disabled)|[![Travis CI](https://travis-ci.org/lyst/lightfm.svg?branch=master)](https://travis-ci.org/lyst/lightfm)|
| Windows (OpenMP disabled) |[![Appveyor](https://ci.appveyor.com/api/projects/status/6cqpqb6969i1h4p7/branch/master?svg=true)](https://ci.appveyor.com/project/maciejkula/lightfm/branch/master)|

[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/lightfm-rec/Lobby) [![PyPI](https://img.shields.io/pypi/v/lightfm.svg)](https://pypi.python.org/pypi/lightfm/)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/lightfm/badges/version.svg)](https://anaconda.org/conda-forge/lightfm)

LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high quality results.

It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their features, thus allowing recommendations to generalise to new items (via item features) and to new users (via user features).

For more details, see the [Documentation](http://lyst.github.io/lightfm/docs/home.html).

Need help? Contact me via [email](mailto:lightfm@zoho.com), [Twitter](https://twitter.com/Maciej_Kula), or [Gitter](https://gitter.im/lightfm-rec/Lobby).

## Installation
Install from `pip`:
```
pip install lightfm
```
or Conda:
```
conda install -c conda-forge lightfm
```

## Quickstart
Fitting an implicit feedback model on the MovieLens 100k dataset is very easy:
```python
from lightfm import LightFM
from lightfm.datasets import fetch_movielens
from lightfm.evaluation import precision_at_k

# Load the MovieLens 100k dataset. Only five
# star ratings are treated as positive.
data = fetch_movielens(min_rating=5.0)

# Instantiate and train the model
model = LightFM(loss='warp')
model.fit(data['train'], epochs=30, num_threads=2)

# Evaluate the trained model
test_precision = precision_at_k(model, data['test'], k=5).mean()
```

## Articles and tutorials on using LightFM
1. [Learning to Rank Sketchfab Models with LightFM](http://blog.ethanrosenthal.com/2016/11/07/implicit-mf-part-2/)
2. [Metadata Embeddings for User and Item Cold-start Recommendations](http://building-babylon.net/2016/01/26/metadata-embeddings-for-user-and-item-cold-start-recommendations/)
3. [Recommendation Systems - Learn Python for Data Science](https://www.youtube.com/watch?v=9gBC9R-msAk)
4. [Using LightFM to Recommend Projects to Consultants](https://medium.com/product-at-catalant-technologies/using-lightfm-to-recommend-projects-to-consultants-44084df7321c#.gu887ky51)

## How to cite
Please cite LightFM if it helps your research. You can use the following BibTeX entry:
```
@inproceedings{DBLP:conf/recsys/Kula15,
  author    = {Maciej Kula},
  editor    = {Toine Bogers and
               Marijn Koolen},
  title     = {Metadata Embeddings for User and Item Cold-start Recommendations},
  booktitle = {Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender
               Systems co-located with 9th {ACM} Conference on Recommender Systems
               (RecSys 2015), Vienna, Austria, September 16-20, 2015.},
  series    = {{CEUR} Workshop Proceedings},
  volume    = {1448},
  pages     = {14--21},
  publisher = {CEUR-WS.org},
  year      = {2015},
  url       = {http://ceur-ws.org/Vol-1448/paper4.pdf},
}
```

## Development
Pull requests are welcome. To install for development:

1. Clone the repository: `git clone git@github.com:lyst/lightfm.git`
2. Setup a virtual environment: `cd lightfm && python3 -m venv venv && source ./venv/bin/activate`
3. Install it for development using pip: `pip install -e . && pip install -r test-requirements.txt`
4. You can run tests by running `./venv/bin/py.test tests`.
5. LightFM uses [black](https://github.com/ambv/black) to enforce code formatting and flake8 for linting, see `lint-requirements.txt`.
6. [Optional]: You can install pre-commit to locally enfore formatting and linting. Install with:
    ```bash
    pip install pre-commit
    pre-commit install
    ```

When making changes to the `.pyx` extension files, you'll need to run `python setup.py cythonize` in order to produce the extension `.c` files before running `pip install -e .`.

%package -n python3-lightfm
Summary:	LightFM recommendation model
Provides:	python-lightfm
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-lightfm
# LightFM

![LightFM logo](lightfm.png)

| Build status | |
|---|---|
| Linux |[![Circle CI](https://circleci.com/gh/lyst/lightfm.svg?style=svg)](https://circleci.com/gh/lyst/lightfm)|
| OSX (OpenMP disabled)|[![Travis CI](https://travis-ci.org/lyst/lightfm.svg?branch=master)](https://travis-ci.org/lyst/lightfm)|
| Windows (OpenMP disabled) |[![Appveyor](https://ci.appveyor.com/api/projects/status/6cqpqb6969i1h4p7/branch/master?svg=true)](https://ci.appveyor.com/project/maciejkula/lightfm/branch/master)|

[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/lightfm-rec/Lobby) [![PyPI](https://img.shields.io/pypi/v/lightfm.svg)](https://pypi.python.org/pypi/lightfm/)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/lightfm/badges/version.svg)](https://anaconda.org/conda-forge/lightfm)

LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high quality results.

It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their features, thus allowing recommendations to generalise to new items (via item features) and to new users (via user features).

For more details, see the [Documentation](http://lyst.github.io/lightfm/docs/home.html).

Need help? Contact me via [email](mailto:lightfm@zoho.com), [Twitter](https://twitter.com/Maciej_Kula), or [Gitter](https://gitter.im/lightfm-rec/Lobby).

## Installation
Install from `pip`:
```
pip install lightfm
```
or Conda:
```
conda install -c conda-forge lightfm
```

## Quickstart
Fitting an implicit feedback model on the MovieLens 100k dataset is very easy:
```python
from lightfm import LightFM
from lightfm.datasets import fetch_movielens
from lightfm.evaluation import precision_at_k

# Load the MovieLens 100k dataset. Only five
# star ratings are treated as positive.
data = fetch_movielens(min_rating=5.0)

# Instantiate and train the model
model = LightFM(loss='warp')
model.fit(data['train'], epochs=30, num_threads=2)

# Evaluate the trained model
test_precision = precision_at_k(model, data['test'], k=5).mean()
```

## Articles and tutorials on using LightFM
1. [Learning to Rank Sketchfab Models with LightFM](http://blog.ethanrosenthal.com/2016/11/07/implicit-mf-part-2/)
2. [Metadata Embeddings for User and Item Cold-start Recommendations](http://building-babylon.net/2016/01/26/metadata-embeddings-for-user-and-item-cold-start-recommendations/)
3. [Recommendation Systems - Learn Python for Data Science](https://www.youtube.com/watch?v=9gBC9R-msAk)
4. [Using LightFM to Recommend Projects to Consultants](https://medium.com/product-at-catalant-technologies/using-lightfm-to-recommend-projects-to-consultants-44084df7321c#.gu887ky51)

## How to cite
Please cite LightFM if it helps your research. You can use the following BibTeX entry:
```
@inproceedings{DBLP:conf/recsys/Kula15,
  author    = {Maciej Kula},
  editor    = {Toine Bogers and
               Marijn Koolen},
  title     = {Metadata Embeddings for User and Item Cold-start Recommendations},
  booktitle = {Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender
               Systems co-located with 9th {ACM} Conference on Recommender Systems
               (RecSys 2015), Vienna, Austria, September 16-20, 2015.},
  series    = {{CEUR} Workshop Proceedings},
  volume    = {1448},
  pages     = {14--21},
  publisher = {CEUR-WS.org},
  year      = {2015},
  url       = {http://ceur-ws.org/Vol-1448/paper4.pdf},
}
```

## Development
Pull requests are welcome. To install for development:

1. Clone the repository: `git clone git@github.com:lyst/lightfm.git`
2. Setup a virtual environment: `cd lightfm && python3 -m venv venv && source ./venv/bin/activate`
3. Install it for development using pip: `pip install -e . && pip install -r test-requirements.txt`
4. You can run tests by running `./venv/bin/py.test tests`.
5. LightFM uses [black](https://github.com/ambv/black) to enforce code formatting and flake8 for linting, see `lint-requirements.txt`.
6. [Optional]: You can install pre-commit to locally enfore formatting and linting. Install with:
    ```bash
    pip install pre-commit
    pre-commit install
    ```

When making changes to the `.pyx` extension files, you'll need to run `python setup.py cythonize` in order to produce the extension `.c` files before running `pip install -e .`.

%package help
Summary:	Development documents and examples for lightfm
Provides:	python3-lightfm-doc
%description help
# LightFM

![LightFM logo](lightfm.png)

| Build status | |
|---|---|
| Linux |[![Circle CI](https://circleci.com/gh/lyst/lightfm.svg?style=svg)](https://circleci.com/gh/lyst/lightfm)|
| OSX (OpenMP disabled)|[![Travis CI](https://travis-ci.org/lyst/lightfm.svg?branch=master)](https://travis-ci.org/lyst/lightfm)|
| Windows (OpenMP disabled) |[![Appveyor](https://ci.appveyor.com/api/projects/status/6cqpqb6969i1h4p7/branch/master?svg=true)](https://ci.appveyor.com/project/maciejkula/lightfm/branch/master)|

[![Gitter chat](https://badges.gitter.im/gitterHQ/gitter.png)](https://gitter.im/lightfm-rec/Lobby) [![PyPI](https://img.shields.io/pypi/v/lightfm.svg)](https://pypi.python.org/pypi/lightfm/)
[![Anaconda-Server Badge](https://anaconda.org/conda-forge/lightfm/badges/version.svg)](https://anaconda.org/conda-forge/lightfm)

LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high quality results.

It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their features, thus allowing recommendations to generalise to new items (via item features) and to new users (via user features).

For more details, see the [Documentation](http://lyst.github.io/lightfm/docs/home.html).

Need help? Contact me via [email](mailto:lightfm@zoho.com), [Twitter](https://twitter.com/Maciej_Kula), or [Gitter](https://gitter.im/lightfm-rec/Lobby).

## Installation
Install from `pip`:
```
pip install lightfm
```
or Conda:
```
conda install -c conda-forge lightfm
```

## Quickstart
Fitting an implicit feedback model on the MovieLens 100k dataset is very easy:
```python
from lightfm import LightFM
from lightfm.datasets import fetch_movielens
from lightfm.evaluation import precision_at_k

# Load the MovieLens 100k dataset. Only five
# star ratings are treated as positive.
data = fetch_movielens(min_rating=5.0)

# Instantiate and train the model
model = LightFM(loss='warp')
model.fit(data['train'], epochs=30, num_threads=2)

# Evaluate the trained model
test_precision = precision_at_k(model, data['test'], k=5).mean()
```

## Articles and tutorials on using LightFM
1. [Learning to Rank Sketchfab Models with LightFM](http://blog.ethanrosenthal.com/2016/11/07/implicit-mf-part-2/)
2. [Metadata Embeddings for User and Item Cold-start Recommendations](http://building-babylon.net/2016/01/26/metadata-embeddings-for-user-and-item-cold-start-recommendations/)
3. [Recommendation Systems - Learn Python for Data Science](https://www.youtube.com/watch?v=9gBC9R-msAk)
4. [Using LightFM to Recommend Projects to Consultants](https://medium.com/product-at-catalant-technologies/using-lightfm-to-recommend-projects-to-consultants-44084df7321c#.gu887ky51)

## How to cite
Please cite LightFM if it helps your research. You can use the following BibTeX entry:
```
@inproceedings{DBLP:conf/recsys/Kula15,
  author    = {Maciej Kula},
  editor    = {Toine Bogers and
               Marijn Koolen},
  title     = {Metadata Embeddings for User and Item Cold-start Recommendations},
  booktitle = {Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender
               Systems co-located with 9th {ACM} Conference on Recommender Systems
               (RecSys 2015), Vienna, Austria, September 16-20, 2015.},
  series    = {{CEUR} Workshop Proceedings},
  volume    = {1448},
  pages     = {14--21},
  publisher = {CEUR-WS.org},
  year      = {2015},
  url       = {http://ceur-ws.org/Vol-1448/paper4.pdf},
}
```

## Development
Pull requests are welcome. To install for development:

1. Clone the repository: `git clone git@github.com:lyst/lightfm.git`
2. Setup a virtual environment: `cd lightfm && python3 -m venv venv && source ./venv/bin/activate`
3. Install it for development using pip: `pip install -e . && pip install -r test-requirements.txt`
4. You can run tests by running `./venv/bin/py.test tests`.
5. LightFM uses [black](https://github.com/ambv/black) to enforce code formatting and flake8 for linting, see `lint-requirements.txt`.
6. [Optional]: You can install pre-commit to locally enfore formatting and linting. Install with:
    ```bash
    pip install pre-commit
    pre-commit install
    ```

When making changes to the `.pyx` extension files, you'll need to run `python setup.py cythonize` in order to produce the extension `.c` files before running `pip install -e .`.

%prep
%autosetup -n lightfm-1.17

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-lightfm -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 1.17-1
- Package Spec generated