summaryrefslogtreecommitdiff
path: root/python-lightning-bolts.spec
diff options
context:
space:
mode:
Diffstat (limited to 'python-lightning-bolts.spec')
-rw-r--r--python-lightning-bolts.spec526
1 files changed, 526 insertions, 0 deletions
diff --git a/python-lightning-bolts.spec b/python-lightning-bolts.spec
new file mode 100644
index 0000000..ca8b17d
--- /dev/null
+++ b/python-lightning-bolts.spec
@@ -0,0 +1,526 @@
+%global _empty_manifest_terminate_build 0
+Name: python-lightning-bolts
+Version: 0.6.0.post1
+Release: 1
+Summary: Lightning Bolts is a community contribution for ML researchers.
+License: Apache-2.0
+URL: https://github.com/Lightning-AI/lightning-bolts
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/f0/23/0e5e5b5cfc2202f56b48353dc52dc91d3c4b85b09cb6439d996481491d45/lightning-bolts-0.6.0.post1.tar.gz
+BuildArch: noarch
+
+Requires: python3-pytorch-lightning
+Requires: python3-lightning-utilities
+Requires: python3-torchvision
+Requires: python3-torchvision
+Requires: python3-scikit-learn
+Requires: python3-Pillow
+Requires: python3-opencv-python-headless
+Requires: python3-gym[atari]
+Requires: python3-atari-py
+Requires: python3-box2d-py
+Requires: python3-opencv-python
+Requires: python3-matplotlib
+Requires: python3-wandb
+Requires: python3-scipy
+Requires: python3-codecov
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-check-manifest
+Requires: python3-pre-commit
+Requires: python3-mypy
+Requires: python3-atari-py
+Requires: python3-scikit-learn
+Requires: python3-sparseml
+Requires: python3-ale-py
+Requires: python3-jsonargparse[signatures]
+Requires: python3-torchvision
+Requires: python3-scikit-learn
+Requires: python3-Pillow
+Requires: python3-opencv-python-headless
+Requires: python3-gym[atari]
+Requires: python3-atari-py
+Requires: python3-box2d-py
+Requires: python3-opencv-python
+Requires: python3-matplotlib
+Requires: python3-wandb
+Requires: python3-scipy
+Requires: python3-matplotlib
+Requires: python3-wandb
+Requires: python3-scipy
+Requires: python3-torchvision
+Requires: python3-scikit-learn
+Requires: python3-Pillow
+Requires: python3-opencv-python-headless
+Requires: python3-gym[atari]
+Requires: python3-atari-py
+Requires: python3-box2d-py
+Requires: python3-opencv-python
+Requires: python3-codecov
+Requires: python3-pytest
+Requires: python3-pytest-cov
+Requires: python3-check-manifest
+Requires: python3-pre-commit
+Requires: python3-mypy
+Requires: python3-atari-py
+Requires: python3-scikit-learn
+Requires: python3-sparseml
+Requires: python3-ale-py
+Requires: python3-jsonargparse[signatures]
+
+%description
+<div align="center">
+
+<img src="https://github.com/Lightning-AI/lightning-bolts/raw/0.6.0.post1/docs/source/_images/logos/bolts_logo.png" width="400px">
+
+**Deep Learning components for extending PyTorch Lightning**
+
+______________________________________________________________________
+
+<p align="center">
+ <a href="#install">Installation</a> •
+ <a href="https://lightning-bolts.readthedocs.io/en/latest/">Latest Docs</a> •
+ <a href="https://lightning-bolts.readthedocs.io/en/0.6.0.post1">Stable Docs</a> •
+ <a href="#what-is-bolts">About</a> •
+ <a href="#team">Community</a> •
+ <a href="https://www.pytorchlightning.ai/">Website</a> •
+ <a href="https://www.grid.ai/">Grid AI</a> •
+ <a href="#license">License</a>
+</p>
+
+[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts)
+[![PyPI Status](https://pepy.tech/badge/lightning-bolts)](https://pepy.tech/project/lightning-bolts)
+[![Build Status](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_apis/build/status/Lightning-AI.lightning-bolts?branchName=master)](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_build?definitionId=31&_a=summary&repositoryFilter=13&branchFilter=4923%2C4923)
+[![codecov](https://codecov.io/gh/Lightning-AI/lightning-bolts/release/0.6.0.post1/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-AI/lightning-bolts)
+
+[![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/)
+[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community)
+[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)
+
+</div>
+
+______________________________________________________________________
+
+## Getting Started
+
+Pip / Conda
+
+```bash
+pip install lightning-bolts
+```
+
+<details>
+ <summary>Other installations</summary>
+
+Install bleeding-edge (no guarantees)
+
+```bash
+pip install git+https://github.com/PytorchLightning/lightning-bolts.git@master --upgrade
+```
+
+To install all optional dependencies
+
+```bash
+pip install lightning-bolts["extra"]
+```
+
+</details>
+
+## What is Bolts
+
+Bolts provides a variety of components to extend PyTorch Lightning such as callbacks & datasets, for applied research and production.
+
+## News
+
+- Sept 22: [Leverage Sparsity for Faster Inference with Lightning Flash and SparseML](https://devblog.pytorchlightning.ai/leverage-sparsity-for-faster-inference-with-lightning-flash-and-sparseml-cdda1165622b)
+- Aug 26: [Fine-tune Transformers Faster with Lightning Flash and Torch ORT](https://devblog.pytorchlightning.ai/fine-tune-transformers-faster-with-lightning-flash-and-torch-ort-ec2d53789dc3)
+
+#### Example 1: Accelerate Lightning Training with the Torch ORT Callback
+
+Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details.
+
+```python
+from pytorch_lightning import LightningModule, Trainer
+import torchvision.models as models
+from pl_bolts.callbacks import ORTCallback
+
+
+class VisionModel(LightningModule):
+ def __init__(self):
+ super().__init__()
+ self.model = models.vgg19_bn(pretrained=True)
+
+ ...
+
+
+model = VisionModel()
+trainer = Trainer(gpus=1, callbacks=ORTCallback())
+trainer.fit(model)
+```
+
+#### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference
+
+We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time.
+
+```python
+from pytorch_lightning import LightningModule, Trainer
+import torchvision.models as models
+from pl_bolts.callbacks import SparseMLCallback
+
+
+class VisionModel(LightningModule):
+ def __init__(self):
+ super().__init__()
+ self.model = models.vgg19_bn(pretrained=True)
+
+ ...
+
+
+model = VisionModel()
+trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml"))
+trainer.fit(model)
+```
+
+## Are specific research implementations supported?
+
+We'd like to encourage users to contribute general components that will help a broad range of problems, however components that help specifics domains will also be welcomed!
+
+For example a callback to help train SSL models would be a great contribution, however the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash).
+
+Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL based tasks.
+
+## Contribute!
+
+Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community!
+
+Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor!
+
+______________________________________________________________________
+
+## License
+
+Please observe the Apache 2.0 license that is listed in this repository.
+In addition the Lightning framework is Patent Pending.
+
+
+%package -n python3-lightning-bolts
+Summary: Lightning Bolts is a community contribution for ML researchers.
+Provides: python-lightning-bolts
+BuildRequires: python3-devel
+BuildRequires: python3-setuptools
+BuildRequires: python3-pip
+%description -n python3-lightning-bolts
+<div align="center">
+
+<img src="https://github.com/Lightning-AI/lightning-bolts/raw/0.6.0.post1/docs/source/_images/logos/bolts_logo.png" width="400px">
+
+**Deep Learning components for extending PyTorch Lightning**
+
+______________________________________________________________________
+
+<p align="center">
+ <a href="#install">Installation</a> •
+ <a href="https://lightning-bolts.readthedocs.io/en/latest/">Latest Docs</a> •
+ <a href="https://lightning-bolts.readthedocs.io/en/0.6.0.post1">Stable Docs</a> •
+ <a href="#what-is-bolts">About</a> •
+ <a href="#team">Community</a> •
+ <a href="https://www.pytorchlightning.ai/">Website</a> •
+ <a href="https://www.grid.ai/">Grid AI</a> •
+ <a href="#license">License</a>
+</p>
+
+[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts)
+[![PyPI Status](https://pepy.tech/badge/lightning-bolts)](https://pepy.tech/project/lightning-bolts)
+[![Build Status](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_apis/build/status/Lightning-AI.lightning-bolts?branchName=master)](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_build?definitionId=31&_a=summary&repositoryFilter=13&branchFilter=4923%2C4923)
+[![codecov](https://codecov.io/gh/Lightning-AI/lightning-bolts/release/0.6.0.post1/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-AI/lightning-bolts)
+
+[![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/)
+[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community)
+[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)
+
+</div>
+
+______________________________________________________________________
+
+## Getting Started
+
+Pip / Conda
+
+```bash
+pip install lightning-bolts
+```
+
+<details>
+ <summary>Other installations</summary>
+
+Install bleeding-edge (no guarantees)
+
+```bash
+pip install git+https://github.com/PytorchLightning/lightning-bolts.git@master --upgrade
+```
+
+To install all optional dependencies
+
+```bash
+pip install lightning-bolts["extra"]
+```
+
+</details>
+
+## What is Bolts
+
+Bolts provides a variety of components to extend PyTorch Lightning such as callbacks & datasets, for applied research and production.
+
+## News
+
+- Sept 22: [Leverage Sparsity for Faster Inference with Lightning Flash and SparseML](https://devblog.pytorchlightning.ai/leverage-sparsity-for-faster-inference-with-lightning-flash-and-sparseml-cdda1165622b)
+- Aug 26: [Fine-tune Transformers Faster with Lightning Flash and Torch ORT](https://devblog.pytorchlightning.ai/fine-tune-transformers-faster-with-lightning-flash-and-torch-ort-ec2d53789dc3)
+
+#### Example 1: Accelerate Lightning Training with the Torch ORT Callback
+
+Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details.
+
+```python
+from pytorch_lightning import LightningModule, Trainer
+import torchvision.models as models
+from pl_bolts.callbacks import ORTCallback
+
+
+class VisionModel(LightningModule):
+ def __init__(self):
+ super().__init__()
+ self.model = models.vgg19_bn(pretrained=True)
+
+ ...
+
+
+model = VisionModel()
+trainer = Trainer(gpus=1, callbacks=ORTCallback())
+trainer.fit(model)
+```
+
+#### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference
+
+We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time.
+
+```python
+from pytorch_lightning import LightningModule, Trainer
+import torchvision.models as models
+from pl_bolts.callbacks import SparseMLCallback
+
+
+class VisionModel(LightningModule):
+ def __init__(self):
+ super().__init__()
+ self.model = models.vgg19_bn(pretrained=True)
+
+ ...
+
+
+model = VisionModel()
+trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml"))
+trainer.fit(model)
+```
+
+## Are specific research implementations supported?
+
+We'd like to encourage users to contribute general components that will help a broad range of problems, however components that help specifics domains will also be welcomed!
+
+For example a callback to help train SSL models would be a great contribution, however the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash).
+
+Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL based tasks.
+
+## Contribute!
+
+Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community!
+
+Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor!
+
+______________________________________________________________________
+
+## License
+
+Please observe the Apache 2.0 license that is listed in this repository.
+In addition the Lightning framework is Patent Pending.
+
+
+%package help
+Summary: Development documents and examples for lightning-bolts
+Provides: python3-lightning-bolts-doc
+%description help
+<div align="center">
+
+<img src="https://github.com/Lightning-AI/lightning-bolts/raw/0.6.0.post1/docs/source/_images/logos/bolts_logo.png" width="400px">
+
+**Deep Learning components for extending PyTorch Lightning**
+
+______________________________________________________________________
+
+<p align="center">
+ <a href="#install">Installation</a> •
+ <a href="https://lightning-bolts.readthedocs.io/en/latest/">Latest Docs</a> •
+ <a href="https://lightning-bolts.readthedocs.io/en/0.6.0.post1">Stable Docs</a> •
+ <a href="#what-is-bolts">About</a> •
+ <a href="#team">Community</a> •
+ <a href="https://www.pytorchlightning.ai/">Website</a> •
+ <a href="https://www.grid.ai/">Grid AI</a> •
+ <a href="#license">License</a>
+</p>
+
+[![PyPI Status](https://badge.fury.io/py/lightning-bolts.svg)](https://badge.fury.io/py/lightning-bolts)
+[![PyPI Status](https://pepy.tech/badge/lightning-bolts)](https://pepy.tech/project/lightning-bolts)
+[![Build Status](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_apis/build/status/Lightning-AI.lightning-bolts?branchName=master)](https://dev.azure.com/Lightning-AI/lightning%20Bolts/_build?definitionId=31&_a=summary&repositoryFilter=13&branchFilter=4923%2C4923)
+[![codecov](https://codecov.io/gh/Lightning-AI/lightning-bolts/release/0.6.0.post1/graph/badge.svg?token=O8p0qhvj90)](https://codecov.io/gh/Lightning-AI/lightning-bolts)
+
+[![Documentation Status](https://readthedocs.org/projects/lightning-bolts/badge/?version=latest)](https://lightning-bolts.readthedocs.io/en/latest/)
+[![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://www.pytorchlightning.ai/community)
+[![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/lightning-bolts/blob/master/LICENSE)
+
+</div>
+
+______________________________________________________________________
+
+## Getting Started
+
+Pip / Conda
+
+```bash
+pip install lightning-bolts
+```
+
+<details>
+ <summary>Other installations</summary>
+
+Install bleeding-edge (no guarantees)
+
+```bash
+pip install git+https://github.com/PytorchLightning/lightning-bolts.git@master --upgrade
+```
+
+To install all optional dependencies
+
+```bash
+pip install lightning-bolts["extra"]
+```
+
+</details>
+
+## What is Bolts
+
+Bolts provides a variety of components to extend PyTorch Lightning such as callbacks & datasets, for applied research and production.
+
+## News
+
+- Sept 22: [Leverage Sparsity for Faster Inference with Lightning Flash and SparseML](https://devblog.pytorchlightning.ai/leverage-sparsity-for-faster-inference-with-lightning-flash-and-sparseml-cdda1165622b)
+- Aug 26: [Fine-tune Transformers Faster with Lightning Flash and Torch ORT](https://devblog.pytorchlightning.ai/fine-tune-transformers-faster-with-lightning-flash-and-torch-ort-ec2d53789dc3)
+
+#### Example 1: Accelerate Lightning Training with the Torch ORT Callback
+
+Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. See the [documentation](https://lightning-bolts.readthedocs.io/en/latest/callbacks/torch_ort.html) for more details.
+
+```python
+from pytorch_lightning import LightningModule, Trainer
+import torchvision.models as models
+from pl_bolts.callbacks import ORTCallback
+
+
+class VisionModel(LightningModule):
+ def __init__(self):
+ super().__init__()
+ self.model = models.vgg19_bn(pretrained=True)
+
+ ...
+
+
+model = VisionModel()
+trainer = Trainer(gpus=1, callbacks=ORTCallback())
+trainer.fit(model)
+```
+
+#### Example 2: Introduce Sparsity with the SparseMLCallback to Accelerate Inference
+
+We can introduce sparsity during fine-tuning with [SparseML](https://github.com/neuralmagic/sparseml), which ultimately allows us to leverage the [DeepSparse](https://github.com/neuralmagic/deepsparse) engine to see performance improvements at inference time.
+
+```python
+from pytorch_lightning import LightningModule, Trainer
+import torchvision.models as models
+from pl_bolts.callbacks import SparseMLCallback
+
+
+class VisionModel(LightningModule):
+ def __init__(self):
+ super().__init__()
+ self.model = models.vgg19_bn(pretrained=True)
+
+ ...
+
+
+model = VisionModel()
+trainer = Trainer(gpus=1, callbacks=SparseMLCallback(recipe_path="recipe.yaml"))
+trainer.fit(model)
+```
+
+## Are specific research implementations supported?
+
+We'd like to encourage users to contribute general components that will help a broad range of problems, however components that help specifics domains will also be welcomed!
+
+For example a callback to help train SSL models would be a great contribution, however the next greatest SSL model from your latest paper would be a good contribution to [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash).
+
+Use [Lightning Flash](https://github.com/PyTorchLightning/lightning-flash) to train, predict and serve state-of-the-art models for applied research. We suggest looking at our [VISSL](https://lightning-flash.readthedocs.io/en/latest/integrations/vissl.html) Flash integration for SSL based tasks.
+
+## Contribute!
+
+Bolts is supported by the PyTorch Lightning team and the PyTorch Lightning community!
+
+Join our Slack and/or read our [CONTRIBUTING](./.github/CONTRIBUTING.md) guidelines to get help becoming a contributor!
+
+______________________________________________________________________
+
+## License
+
+Please observe the Apache 2.0 license that is listed in this repository.
+In addition the Lightning framework is Patent Pending.
+
+
+%prep
+%autosetup -n lightning-bolts-0.6.0.post1
+
+%build
+%py3_build
+
+%install
+%py3_install
+install -d -m755 %{buildroot}/%{_pkgdocdir}
+if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
+if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
+if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
+if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
+pushd %{buildroot}
+if [ -d usr/lib ]; then
+ find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/lib64 ]; then
+ find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/bin ]; then
+ find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+if [ -d usr/sbin ]; then
+ find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
+fi
+touch doclist.lst
+if [ -d usr/share/man ]; then
+ find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
+fi
+popd
+mv %{buildroot}/filelist.lst .
+mv %{buildroot}/doclist.lst .
+
+%files -n python3-lightning-bolts -f filelist.lst
+%dir %{python3_sitelib}/*
+
+%files help -f doclist.lst
+%{_docdir}/*
+
+%changelog
+* Tue Apr 11 2023 Python_Bot <Python_Bot@openeuler.org> - 0.6.0.post1-1
+- Package Spec generated