summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--.gitignore1
-rw-r--r--python-linearmodels.spec976
-rw-r--r--sources2
3 files changed, 490 insertions, 489 deletions
diff --git a/.gitignore b/.gitignore
index e7c2473..b1c2eeb 100644
--- a/.gitignore
+++ b/.gitignore
@@ -1 +1,2 @@
/linearmodels-4.27.tar.gz
+/linearmodels-4.29.tar.gz
diff --git a/python-linearmodels.spec b/python-linearmodels.spec
index 9534c9b..61f0931 100644
--- a/python-linearmodels.spec
+++ b/python-linearmodels.spec
@@ -1,11 +1,11 @@
%global _empty_manifest_terminate_build 0
Name: python-linearmodels
-Version: 4.27
+Version: 4.29
Release: 1
Summary: Linear Panel, Instrumental Variable, Asset Pricing, and System Regression models for Python
License: NCSA
URL: http://github.com/bashtage/linearmodels
-Source0: https://mirrors.nju.edu.cn/pypi/web/packages/ab/db/dcd2f13a06cb7537b65464e3632f731ff6f4db344e0b9d6c8d8e3d95fe62/linearmodels-4.27.tar.gz
+Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b7/f4/c60c761f36efd875f5bd8df54f66e34f812bd472f960b2d5e6740c5b0fa1/linearmodels-4.29.tar.gz
Requires: python3-numpy
Requires: python3-pandas
@@ -16,170 +16,170 @@ Requires: python3-mypy-extensions
Requires: python3-Cython
Requires: python3-pyhdfe
Requires: python3-formulaic
-Requires: python3-setuptools-scm
+Requires: python3-setuptools-scm[toml]
%description
-# Linear Models
-
-| Metric | |
-| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| **Latest Release** | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels) |
-| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main) |
-| | [![Build status](https://ci.appveyor.com/api/projects/status/7768doy6wrdunmdt/branch/main?svg=true)](https://ci.appveyor.com/project/bashtage/linearmodels/branch/main) |
-| **Coverage** | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels) |
-| **Code Quality** | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |
-| | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main) |
-| | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/context:python) |
-| | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/alerts) |
-| **Citation** | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672) |
-
-Linear (regression) models for Python. Extends
-[statsmodels](http://www.statsmodels.org) with Panel regression,
-instrumental variable estimators, system estimators and models for
-estimating asset prices:
-
-- **Panel models**:
- - Fixed effects (maximum two-way)
- - First difference regression
- - Between estimator for panel data
- - Pooled regression for panel data
- - Fama-MacBeth estimation of panel models
-
-- **High-dimensional Regresssion**:
- - Absorbing Least Squares
-
-- **Instrumental Variable estimators**
- - Two-stage Least Squares
- - Limited Information Maximum Likelihood
- - k-class Estimators
- - Generalized Method of Moments, also with continuously updating
-
-- **Factor Asset Pricing Models**:
- - 2- and 3-step estimation
- - Time-series estimation
- - GMM estimation
-
-- **System Regression**:
- - Seemingly Unrelated Regression (SUR/SURE)
- - Three-Stage Least Squares (3SLS)
- - Generalized Method of Moments (GMM) System Estimation
-
-Designed to work equally well with NumPy, Pandas or xarray data.
-
-## Panel models
-
-Like [statsmodels](http://www.statsmodels.org) to include, supports
-formulas for specifying models. For example, the classic Grunfeld regression can be
-specified
-
-```python
-import numpy as np
-from statsmodels.datasets import grunfeld
-data = grunfeld.load_pandas().data
-data.year = data.year.astype(np.int64)
-# MultiIndex, entity - time
-data = data.set_index(['firm','year'])
-from linearmodels import PanelOLS
-mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
-res = mod.fit(cov_type='clustered', cluster_entity=True)
-```
-
-Models can also be specified using the formula interface.
-
-```python
-from linearmodels import PanelOLS
-mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
-res = mod.fit(cov_type='clustered', cluster_entity=True)
-```
-
-The formula interface for `PanelOLS` supports the special values
-`EntityEffects` and `TimeEffects` which add entity (fixed) and time
-effects, respectively.
-
-Formula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)
-package which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).
-
-## Instrumental Variable Models
-
-IV regression models can be similarly specified.
-
-```python
-import numpy as np
-from linearmodels.iv import IV2SLS
-from linearmodels.datasets import mroz
-data = mroz.load()
-mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)
-```
-
-The expressions in the `[ ]` indicate endogenous regressors (before `~`)
-and the instruments.
-
-## Installing
-
-The latest release can be installed using pip
-
-```bash
-pip install linearmodels
-```
-
-The main branch can be installed by cloning the repo and running setup
-
-```bash
-git clone https://github.com/bashtage/linearmodels
-cd linearmodels
-pip install .
-```
-
-## Documentation
-
-[Stable Documentation](https://bashtage.github.io/linearmodels/) is
-built on every tagged version using
-[doctr](https://github.com/drdoctr/doctr).
-[Development Documentation](https://bashtage.github.io/linearmodels/devel)
-is automatically built on every successful build of main.
-
-## Plan and status
-
-Should eventually add some useful linear model estimators such as panel
-regression. Currently only the single variable IV estimators are polished.
-
-- Linear Instrumental variable estimation - **complete**
-- Linear Panel model estimation - **complete**
-- Fama-MacBeth regression - **complete**
-- Linear Factor Asset Pricing - **complete**
-- System regression - **complete**
-- Linear IV Panel model estimation - _not started_
-- Dynamic Panel model estimation - _not started_
-
-## Requirements
-
-### Running
-
-With the exception of Python 3 (3.8+ tested), which is a hard requirement, the
-others are the version that are being used in the test environment. It
-is possible that older versions work.
-
-- Python 3.8+
-- NumPy (1.18+)
-- SciPy (1.3+)
-- pandas (1.0+)
-- statsmodels (0.12+)
-- xarray (0.16+, optional)
-- Cython (0.29.24+, optional)
-
-### Testing
-
-- py.test
-
-### Documentation
-
-- sphinx
-- sphinx-material
-- nbsphinx
-- nbconvert
-- nbformat
-- ipython
-- jupyter
+# Linear Models
+
+| Metric | |
+| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| **Latest Release** | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels) |
+| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main) |
+| | [![Build status](https://ci.appveyor.com/api/projects/status/7768doy6wrdunmdt/branch/main?svg=true)](https://ci.appveyor.com/project/bashtage/linearmodels/branch/main) |
+| **Coverage** | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels) |
+| **Code Quality** | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |
+| | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main) |
+| | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/context:python) |
+| | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/alerts) |
+| **Citation** | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672) |
+
+Linear (regression) models for Python. Extends
+[statsmodels](http://www.statsmodels.org) with Panel regression,
+instrumental variable estimators, system estimators and models for
+estimating asset prices:
+
+- **Panel models**:
+ - Fixed effects (maximum two-way)
+ - First difference regression
+ - Between estimator for panel data
+ - Pooled regression for panel data
+ - Fama-MacBeth estimation of panel models
+
+- **High-dimensional Regresssion**:
+ - Absorbing Least Squares
+
+- **Instrumental Variable estimators**
+ - Two-stage Least Squares
+ - Limited Information Maximum Likelihood
+ - k-class Estimators
+ - Generalized Method of Moments, also with continuously updating
+
+- **Factor Asset Pricing Models**:
+ - 2- and 3-step estimation
+ - Time-series estimation
+ - GMM estimation
+
+- **System Regression**:
+ - Seemingly Unrelated Regression (SUR/SURE)
+ - Three-Stage Least Squares (3SLS)
+ - Generalized Method of Moments (GMM) System Estimation
+
+Designed to work equally well with NumPy, Pandas or xarray data.
+
+## Panel models
+
+Like [statsmodels](http://www.statsmodels.org) to include, supports
+formulas for specifying models. For example, the classic Grunfeld regression can be
+specified
+
+```python
+import numpy as np
+from statsmodels.datasets import grunfeld
+data = grunfeld.load_pandas().data
+data.year = data.year.astype(np.int64)
+# MultiIndex, entity - time
+data = data.set_index(['firm','year'])
+from linearmodels import PanelOLS
+mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
+res = mod.fit(cov_type='clustered', cluster_entity=True)
+```
+
+Models can also be specified using the formula interface.
+
+```python
+from linearmodels import PanelOLS
+mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
+res = mod.fit(cov_type='clustered', cluster_entity=True)
+```
+
+The formula interface for `PanelOLS` supports the special values
+`EntityEffects` and `TimeEffects` which add entity (fixed) and time
+effects, respectively.
+
+Formula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)
+package which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).
+
+## Instrumental Variable Models
+
+IV regression models can be similarly specified.
+
+```python
+import numpy as np
+from linearmodels.iv import IV2SLS
+from linearmodels.datasets import mroz
+data = mroz.load()
+mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)
+```
+
+The expressions in the `[ ]` indicate endogenous regressors (before `~`)
+and the instruments.
+
+## Installing
+
+The latest release can be installed using pip
+
+```bash
+pip install linearmodels
+```
+
+The main branch can be installed by cloning the repo and running setup
+
+```bash
+git clone https://github.com/bashtage/linearmodels
+cd linearmodels
+pip install .
+```
+
+## Documentation
+
+[Stable Documentation](https://bashtage.github.io/linearmodels/) is
+built on every tagged version using
+[doctr](https://github.com/drdoctr/doctr).
+[Development Documentation](https://bashtage.github.io/linearmodels/devel)
+is automatically built on every successful build of main.
+
+## Plan and status
+
+Should eventually add some useful linear model estimators such as panel
+regression. Currently only the single variable IV estimators are polished.
+
+- Linear Instrumental variable estimation - **complete**
+- Linear Panel model estimation - **complete**
+- Fama-MacBeth regression - **complete**
+- Linear Factor Asset Pricing - **complete**
+- System regression - **complete**
+- Linear IV Panel model estimation - _not started_
+- Dynamic Panel model estimation - _not started_
+
+## Requirements
+
+### Running
+
+With the exception of Python 3 (3.8+ tested), which is a hard requirement, the
+others are the version that are being used in the test environment. It
+is possible that older versions work.
+
+- Python 3.8+
+- NumPy (1.18+)
+- SciPy (1.3+)
+- pandas (1.0+)
+- statsmodels (0.12+)
+- xarray (0.16+, optional)
+- Cython (0.29.24+, optional)
+
+### Testing
+
+- py.test
+
+### Documentation
+
+- sphinx
+- sphinx-material
+- nbsphinx
+- nbconvert
+- nbformat
+- ipython
+- jupyter
%package -n python3-linearmodels
@@ -192,338 +192,338 @@ BuildRequires: python3-cffi
BuildRequires: gcc
BuildRequires: gdb
%description -n python3-linearmodels
-# Linear Models
-
-| Metric | |
-| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| **Latest Release** | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels) |
-| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main) |
-| | [![Build status](https://ci.appveyor.com/api/projects/status/7768doy6wrdunmdt/branch/main?svg=true)](https://ci.appveyor.com/project/bashtage/linearmodels/branch/main) |
-| **Coverage** | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels) |
-| **Code Quality** | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |
-| | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main) |
-| | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/context:python) |
-| | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/alerts) |
-| **Citation** | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672) |
-
-Linear (regression) models for Python. Extends
-[statsmodels](http://www.statsmodels.org) with Panel regression,
-instrumental variable estimators, system estimators and models for
-estimating asset prices:
-
-- **Panel models**:
- - Fixed effects (maximum two-way)
- - First difference regression
- - Between estimator for panel data
- - Pooled regression for panel data
- - Fama-MacBeth estimation of panel models
-
-- **High-dimensional Regresssion**:
- - Absorbing Least Squares
-
-- **Instrumental Variable estimators**
- - Two-stage Least Squares
- - Limited Information Maximum Likelihood
- - k-class Estimators
- - Generalized Method of Moments, also with continuously updating
-
-- **Factor Asset Pricing Models**:
- - 2- and 3-step estimation
- - Time-series estimation
- - GMM estimation
-
-- **System Regression**:
- - Seemingly Unrelated Regression (SUR/SURE)
- - Three-Stage Least Squares (3SLS)
- - Generalized Method of Moments (GMM) System Estimation
-
-Designed to work equally well with NumPy, Pandas or xarray data.
-
-## Panel models
-
-Like [statsmodels](http://www.statsmodels.org) to include, supports
-formulas for specifying models. For example, the classic Grunfeld regression can be
-specified
-
-```python
-import numpy as np
-from statsmodels.datasets import grunfeld
-data = grunfeld.load_pandas().data
-data.year = data.year.astype(np.int64)
-# MultiIndex, entity - time
-data = data.set_index(['firm','year'])
-from linearmodels import PanelOLS
-mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
-res = mod.fit(cov_type='clustered', cluster_entity=True)
-```
-
-Models can also be specified using the formula interface.
-
-```python
-from linearmodels import PanelOLS
-mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
-res = mod.fit(cov_type='clustered', cluster_entity=True)
-```
-
-The formula interface for `PanelOLS` supports the special values
-`EntityEffects` and `TimeEffects` which add entity (fixed) and time
-effects, respectively.
-
-Formula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)
-package which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).
-
-## Instrumental Variable Models
-
-IV regression models can be similarly specified.
-
-```python
-import numpy as np
-from linearmodels.iv import IV2SLS
-from linearmodels.datasets import mroz
-data = mroz.load()
-mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)
-```
-
-The expressions in the `[ ]` indicate endogenous regressors (before `~`)
-and the instruments.
-
-## Installing
-
-The latest release can be installed using pip
-
-```bash
-pip install linearmodels
-```
-
-The main branch can be installed by cloning the repo and running setup
-
-```bash
-git clone https://github.com/bashtage/linearmodels
-cd linearmodels
-pip install .
-```
-
-## Documentation
-
-[Stable Documentation](https://bashtage.github.io/linearmodels/) is
-built on every tagged version using
-[doctr](https://github.com/drdoctr/doctr).
-[Development Documentation](https://bashtage.github.io/linearmodels/devel)
-is automatically built on every successful build of main.
-
-## Plan and status
-
-Should eventually add some useful linear model estimators such as panel
-regression. Currently only the single variable IV estimators are polished.
-
-- Linear Instrumental variable estimation - **complete**
-- Linear Panel model estimation - **complete**
-- Fama-MacBeth regression - **complete**
-- Linear Factor Asset Pricing - **complete**
-- System regression - **complete**
-- Linear IV Panel model estimation - _not started_
-- Dynamic Panel model estimation - _not started_
-
-## Requirements
-
-### Running
-
-With the exception of Python 3 (3.8+ tested), which is a hard requirement, the
-others are the version that are being used in the test environment. It
-is possible that older versions work.
-
-- Python 3.8+
-- NumPy (1.18+)
-- SciPy (1.3+)
-- pandas (1.0+)
-- statsmodels (0.12+)
-- xarray (0.16+, optional)
-- Cython (0.29.24+, optional)
-
-### Testing
-
-- py.test
-
-### Documentation
-
-- sphinx
-- sphinx-material
-- nbsphinx
-- nbconvert
-- nbformat
-- ipython
-- jupyter
+# Linear Models
+
+| Metric | |
+| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| **Latest Release** | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels) |
+| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main) |
+| | [![Build status](https://ci.appveyor.com/api/projects/status/7768doy6wrdunmdt/branch/main?svg=true)](https://ci.appveyor.com/project/bashtage/linearmodels/branch/main) |
+| **Coverage** | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels) |
+| **Code Quality** | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |
+| | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main) |
+| | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/context:python) |
+| | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/alerts) |
+| **Citation** | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672) |
+
+Linear (regression) models for Python. Extends
+[statsmodels](http://www.statsmodels.org) with Panel regression,
+instrumental variable estimators, system estimators and models for
+estimating asset prices:
+
+- **Panel models**:
+ - Fixed effects (maximum two-way)
+ - First difference regression
+ - Between estimator for panel data
+ - Pooled regression for panel data
+ - Fama-MacBeth estimation of panel models
+
+- **High-dimensional Regresssion**:
+ - Absorbing Least Squares
+
+- **Instrumental Variable estimators**
+ - Two-stage Least Squares
+ - Limited Information Maximum Likelihood
+ - k-class Estimators
+ - Generalized Method of Moments, also with continuously updating
+
+- **Factor Asset Pricing Models**:
+ - 2- and 3-step estimation
+ - Time-series estimation
+ - GMM estimation
+
+- **System Regression**:
+ - Seemingly Unrelated Regression (SUR/SURE)
+ - Three-Stage Least Squares (3SLS)
+ - Generalized Method of Moments (GMM) System Estimation
+
+Designed to work equally well with NumPy, Pandas or xarray data.
+
+## Panel models
+
+Like [statsmodels](http://www.statsmodels.org) to include, supports
+formulas for specifying models. For example, the classic Grunfeld regression can be
+specified
+
+```python
+import numpy as np
+from statsmodels.datasets import grunfeld
+data = grunfeld.load_pandas().data
+data.year = data.year.astype(np.int64)
+# MultiIndex, entity - time
+data = data.set_index(['firm','year'])
+from linearmodels import PanelOLS
+mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
+res = mod.fit(cov_type='clustered', cluster_entity=True)
+```
+
+Models can also be specified using the formula interface.
+
+```python
+from linearmodels import PanelOLS
+mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
+res = mod.fit(cov_type='clustered', cluster_entity=True)
+```
+
+The formula interface for `PanelOLS` supports the special values
+`EntityEffects` and `TimeEffects` which add entity (fixed) and time
+effects, respectively.
+
+Formula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)
+package which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).
+
+## Instrumental Variable Models
+
+IV regression models can be similarly specified.
+
+```python
+import numpy as np
+from linearmodels.iv import IV2SLS
+from linearmodels.datasets import mroz
+data = mroz.load()
+mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)
+```
+
+The expressions in the `[ ]` indicate endogenous regressors (before `~`)
+and the instruments.
+
+## Installing
+
+The latest release can be installed using pip
+
+```bash
+pip install linearmodels
+```
+
+The main branch can be installed by cloning the repo and running setup
+
+```bash
+git clone https://github.com/bashtage/linearmodels
+cd linearmodels
+pip install .
+```
+
+## Documentation
+
+[Stable Documentation](https://bashtage.github.io/linearmodels/) is
+built on every tagged version using
+[doctr](https://github.com/drdoctr/doctr).
+[Development Documentation](https://bashtage.github.io/linearmodels/devel)
+is automatically built on every successful build of main.
+
+## Plan and status
+
+Should eventually add some useful linear model estimators such as panel
+regression. Currently only the single variable IV estimators are polished.
+
+- Linear Instrumental variable estimation - **complete**
+- Linear Panel model estimation - **complete**
+- Fama-MacBeth regression - **complete**
+- Linear Factor Asset Pricing - **complete**
+- System regression - **complete**
+- Linear IV Panel model estimation - _not started_
+- Dynamic Panel model estimation - _not started_
+
+## Requirements
+
+### Running
+
+With the exception of Python 3 (3.8+ tested), which is a hard requirement, the
+others are the version that are being used in the test environment. It
+is possible that older versions work.
+
+- Python 3.8+
+- NumPy (1.18+)
+- SciPy (1.3+)
+- pandas (1.0+)
+- statsmodels (0.12+)
+- xarray (0.16+, optional)
+- Cython (0.29.24+, optional)
+
+### Testing
+
+- py.test
+
+### Documentation
+
+- sphinx
+- sphinx-material
+- nbsphinx
+- nbconvert
+- nbformat
+- ipython
+- jupyter
%package help
Summary: Development documents and examples for linearmodels
Provides: python3-linearmodels-doc
%description help
-# Linear Models
-
-| Metric | |
-| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
-| **Latest Release** | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels) |
-| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main) |
-| | [![Build status](https://ci.appveyor.com/api/projects/status/7768doy6wrdunmdt/branch/main?svg=true)](https://ci.appveyor.com/project/bashtage/linearmodels/branch/main) |
-| **Coverage** | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels) |
-| **Code Quality** | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |
-| | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main) |
-| | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/context:python) |
-| | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/alerts) |
-| **Citation** | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672) |
-
-Linear (regression) models for Python. Extends
-[statsmodels](http://www.statsmodels.org) with Panel regression,
-instrumental variable estimators, system estimators and models for
-estimating asset prices:
-
-- **Panel models**:
- - Fixed effects (maximum two-way)
- - First difference regression
- - Between estimator for panel data
- - Pooled regression for panel data
- - Fama-MacBeth estimation of panel models
-
-- **High-dimensional Regresssion**:
- - Absorbing Least Squares
-
-- **Instrumental Variable estimators**
- - Two-stage Least Squares
- - Limited Information Maximum Likelihood
- - k-class Estimators
- - Generalized Method of Moments, also with continuously updating
-
-- **Factor Asset Pricing Models**:
- - 2- and 3-step estimation
- - Time-series estimation
- - GMM estimation
-
-- **System Regression**:
- - Seemingly Unrelated Regression (SUR/SURE)
- - Three-Stage Least Squares (3SLS)
- - Generalized Method of Moments (GMM) System Estimation
-
-Designed to work equally well with NumPy, Pandas or xarray data.
-
-## Panel models
-
-Like [statsmodels](http://www.statsmodels.org) to include, supports
-formulas for specifying models. For example, the classic Grunfeld regression can be
-specified
-
-```python
-import numpy as np
-from statsmodels.datasets import grunfeld
-data = grunfeld.load_pandas().data
-data.year = data.year.astype(np.int64)
-# MultiIndex, entity - time
-data = data.set_index(['firm','year'])
-from linearmodels import PanelOLS
-mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
-res = mod.fit(cov_type='clustered', cluster_entity=True)
-```
-
-Models can also be specified using the formula interface.
-
-```python
-from linearmodels import PanelOLS
-mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
-res = mod.fit(cov_type='clustered', cluster_entity=True)
-```
-
-The formula interface for `PanelOLS` supports the special values
-`EntityEffects` and `TimeEffects` which add entity (fixed) and time
-effects, respectively.
-
-Formula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)
-package which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).
-
-## Instrumental Variable Models
-
-IV regression models can be similarly specified.
-
-```python
-import numpy as np
-from linearmodels.iv import IV2SLS
-from linearmodels.datasets import mroz
-data = mroz.load()
-mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)
-```
-
-The expressions in the `[ ]` indicate endogenous regressors (before `~`)
-and the instruments.
-
-## Installing
-
-The latest release can be installed using pip
-
-```bash
-pip install linearmodels
-```
-
-The main branch can be installed by cloning the repo and running setup
-
-```bash
-git clone https://github.com/bashtage/linearmodels
-cd linearmodels
-pip install .
-```
-
-## Documentation
-
-[Stable Documentation](https://bashtage.github.io/linearmodels/) is
-built on every tagged version using
-[doctr](https://github.com/drdoctr/doctr).
-[Development Documentation](https://bashtage.github.io/linearmodels/devel)
-is automatically built on every successful build of main.
-
-## Plan and status
-
-Should eventually add some useful linear model estimators such as panel
-regression. Currently only the single variable IV estimators are polished.
-
-- Linear Instrumental variable estimation - **complete**
-- Linear Panel model estimation - **complete**
-- Fama-MacBeth regression - **complete**
-- Linear Factor Asset Pricing - **complete**
-- System regression - **complete**
-- Linear IV Panel model estimation - _not started_
-- Dynamic Panel model estimation - _not started_
-
-## Requirements
-
-### Running
-
-With the exception of Python 3 (3.8+ tested), which is a hard requirement, the
-others are the version that are being used in the test environment. It
-is possible that older versions work.
-
-- Python 3.8+
-- NumPy (1.18+)
-- SciPy (1.3+)
-- pandas (1.0+)
-- statsmodels (0.12+)
-- xarray (0.16+, optional)
-- Cython (0.29.24+, optional)
-
-### Testing
-
-- py.test
-
-### Documentation
-
-- sphinx
-- sphinx-material
-- nbsphinx
-- nbconvert
-- nbformat
-- ipython
-- jupyter
+# Linear Models
+
+| Metric | |
+| :------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
+| **Latest Release** | [![PyPI version](https://badge.fury.io/py/linearmodels.svg)](https://badge.fury.io/py/linearmodels) |
+| **Continuous Integration** | [![Build Status](https://dev.azure.com/kevinksheppard/kevinksheppard/_apis/build/status/bashtage.linearmodels?branchName=main)](https://dev.azure.com/kevinksheppard/kevinksheppard/_build/latest?definitionId=2&branchName=main) |
+| | [![Build status](https://ci.appveyor.com/api/projects/status/7768doy6wrdunmdt/branch/main?svg=true)](https://ci.appveyor.com/project/bashtage/linearmodels/branch/main) |
+| **Coverage** | [![codecov](https://codecov.io/gh/bashtage/linearmodels/branch/main/graph/badge.svg)](https://codecov.io/gh/bashtage/linearmodels) |
+| **Code Quality** | [![Codacy Badge](https://api.codacy.com/project/badge/Grade/745a24a69cb2466b95df6a53c83892de)](https://www.codacy.com/manual/bashtage/linearmodels?utm_source=github.com&utm_medium=referral&utm_content=bashtage/linearmodels&utm_campaign=Badge_Grade) |
+| | [![codebeat badge](https://codebeat.co/badges/aaae2fb4-72b5-4a66-97cd-77b93488f243)](https://codebeat.co/projects/github-com-bashtage-linearmodels-main) |
+| | [![Code Quality: Python](https://img.shields.io/lgtm/grade/python/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/context:python) |
+| | [![Total Alerts](https://img.shields.io/lgtm/alerts/g/bashtage/linearmodels.svg?logo=lgtm&logoWidth=18)](https://lgtm.com/projects/g/bashtage/linearmodels/alerts) |
+| **Citation** | [![DOI](https://zenodo.org/badge/82291672.svg)](https://zenodo.org/badge/latestdoi/82291672) |
+
+Linear (regression) models for Python. Extends
+[statsmodels](http://www.statsmodels.org) with Panel regression,
+instrumental variable estimators, system estimators and models for
+estimating asset prices:
+
+- **Panel models**:
+ - Fixed effects (maximum two-way)
+ - First difference regression
+ - Between estimator for panel data
+ - Pooled regression for panel data
+ - Fama-MacBeth estimation of panel models
+
+- **High-dimensional Regresssion**:
+ - Absorbing Least Squares
+
+- **Instrumental Variable estimators**
+ - Two-stage Least Squares
+ - Limited Information Maximum Likelihood
+ - k-class Estimators
+ - Generalized Method of Moments, also with continuously updating
+
+- **Factor Asset Pricing Models**:
+ - 2- and 3-step estimation
+ - Time-series estimation
+ - GMM estimation
+
+- **System Regression**:
+ - Seemingly Unrelated Regression (SUR/SURE)
+ - Three-Stage Least Squares (3SLS)
+ - Generalized Method of Moments (GMM) System Estimation
+
+Designed to work equally well with NumPy, Pandas or xarray data.
+
+## Panel models
+
+Like [statsmodels](http://www.statsmodels.org) to include, supports
+formulas for specifying models. For example, the classic Grunfeld regression can be
+specified
+
+```python
+import numpy as np
+from statsmodels.datasets import grunfeld
+data = grunfeld.load_pandas().data
+data.year = data.year.astype(np.int64)
+# MultiIndex, entity - time
+data = data.set_index(['firm','year'])
+from linearmodels import PanelOLS
+mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
+res = mod.fit(cov_type='clustered', cluster_entity=True)
+```
+
+Models can also be specified using the formula interface.
+
+```python
+from linearmodels import PanelOLS
+mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
+res = mod.fit(cov_type='clustered', cluster_entity=True)
+```
+
+The formula interface for `PanelOLS` supports the special values
+`EntityEffects` and `TimeEffects` which add entity (fixed) and time
+effects, respectively.
+
+Formula support comes from the [formulaic](https://github.com/matthewwardrop/formulaic/)
+package which is a replacement for [patsy](https://patsy.readthedocs.io/en/latest/).
+
+## Instrumental Variable Models
+
+IV regression models can be similarly specified.
+
+```python
+import numpy as np
+from linearmodels.iv import IV2SLS
+from linearmodels.datasets import mroz
+data = mroz.load()
+mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)
+```
+
+The expressions in the `[ ]` indicate endogenous regressors (before `~`)
+and the instruments.
+
+## Installing
+
+The latest release can be installed using pip
+
+```bash
+pip install linearmodels
+```
+
+The main branch can be installed by cloning the repo and running setup
+
+```bash
+git clone https://github.com/bashtage/linearmodels
+cd linearmodels
+pip install .
+```
+
+## Documentation
+
+[Stable Documentation](https://bashtage.github.io/linearmodels/) is
+built on every tagged version using
+[doctr](https://github.com/drdoctr/doctr).
+[Development Documentation](https://bashtage.github.io/linearmodels/devel)
+is automatically built on every successful build of main.
+
+## Plan and status
+
+Should eventually add some useful linear model estimators such as panel
+regression. Currently only the single variable IV estimators are polished.
+
+- Linear Instrumental variable estimation - **complete**
+- Linear Panel model estimation - **complete**
+- Fama-MacBeth regression - **complete**
+- Linear Factor Asset Pricing - **complete**
+- System regression - **complete**
+- Linear IV Panel model estimation - _not started_
+- Dynamic Panel model estimation - _not started_
+
+## Requirements
+
+### Running
+
+With the exception of Python 3 (3.8+ tested), which is a hard requirement, the
+others are the version that are being used in the test environment. It
+is possible that older versions work.
+
+- Python 3.8+
+- NumPy (1.18+)
+- SciPy (1.3+)
+- pandas (1.0+)
+- statsmodels (0.12+)
+- xarray (0.16+, optional)
+- Cython (0.29.24+, optional)
+
+### Testing
+
+- py.test
+
+### Documentation
+
+- sphinx
+- sphinx-material
+- nbsphinx
+- nbconvert
+- nbformat
+- ipython
+- jupyter
%prep
-%autosetup -n linearmodels-4.27
+%autosetup -n linearmodels-4.29
%build
%py3_build
@@ -563,5 +563,5 @@ mv %{buildroot}/doclist.lst .
%{_docdir}/*
%changelog
-* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 4.27-1
+* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 4.29-1
- Package Spec generated
diff --git a/sources b/sources
index 9c9fb93..df18491 100644
--- a/sources
+++ b/sources
@@ -1 +1 @@
-a54a92cce98caf8378c7dbb725cfb89d linearmodels-4.27.tar.gz
+f0d7c1b734626680ca1540399451a1cb linearmodels-4.29.tar.gz