%global _empty_manifest_terminate_build 0 Name: python-lucidsonicdreams Version: 0.4 Release: 1 Summary: Syncs GAN-generated visuals to music License: MIT License URL: https://github.com/mikaelalafriz/lucid-sonic-dreams Source0: https://mirrors.aliyun.com/pypi/web/packages/4a/01/91ff8de2866a78435231966bf006eca06d7624c3f7cecce5b8c9b351d97d/lucidsonicdreams-0.4.tar.gz BuildArch: noarch %description # Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses [NVLabs StyleGAN2](https://github.com/NVlabs/stylegan2), with pre-trained models lifted from [Justin Pinkney's consolidated repository](https://github.com/justinpinkney/awesome-pretrained-stylegan2). Custom weights and other GAN architectures can be used as well. Sample output can be found on [YouTube](https://youtu.be/l-nGC-ve7sI) and [Instagram](https://www.instagram.com/lucidsonicdreams/). ## Installation This implementation has been teston on Python 3.6 and 3.7. As per NVLabs' TensorFlow implementation of StyleGAN2, TensorFlow 1.15 is required. TensorFlow 2.x is not supported. To install, simply run: ```pip install lucidsonicdreams``` ## Usage You may refer to the [Lucid Sonic Dreams Tutorial Notebook](https://colab.research.google.com/drive/1Y5i50xSFIuN3V4Md8TB30_GOAtts7RQD?usp=sharing) for full parameter descriptions and sample code templates. A basic visualization snippet is also found below. ### Basic Visualization ``` from lucidsonicdreams import LucidSonicDream L = LucidSonicDream(song = 'song.mp3', style = 'abstract photos') L.hallucinate(file_name = 'song.mp4') ``` %package -n python3-lucidsonicdreams Summary: Syncs GAN-generated visuals to music Provides: python-lucidsonicdreams BuildRequires: python3-devel BuildRequires: python3-setuptools BuildRequires: python3-pip %description -n python3-lucidsonicdreams # Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses [NVLabs StyleGAN2](https://github.com/NVlabs/stylegan2), with pre-trained models lifted from [Justin Pinkney's consolidated repository](https://github.com/justinpinkney/awesome-pretrained-stylegan2). Custom weights and other GAN architectures can be used as well. Sample output can be found on [YouTube](https://youtu.be/l-nGC-ve7sI) and [Instagram](https://www.instagram.com/lucidsonicdreams/). ## Installation This implementation has been teston on Python 3.6 and 3.7. As per NVLabs' TensorFlow implementation of StyleGAN2, TensorFlow 1.15 is required. TensorFlow 2.x is not supported. To install, simply run: ```pip install lucidsonicdreams``` ## Usage You may refer to the [Lucid Sonic Dreams Tutorial Notebook](https://colab.research.google.com/drive/1Y5i50xSFIuN3V4Md8TB30_GOAtts7RQD?usp=sharing) for full parameter descriptions and sample code templates. A basic visualization snippet is also found below. ### Basic Visualization ``` from lucidsonicdreams import LucidSonicDream L = LucidSonicDream(song = 'song.mp3', style = 'abstract photos') L.hallucinate(file_name = 'song.mp4') ``` %package help Summary: Development documents and examples for lucidsonicdreams Provides: python3-lucidsonicdreams-doc %description help # Lucid Sonic Dreams Lucid Sonic Dreams syncs GAN-generated visuals to music. By default, it uses [NVLabs StyleGAN2](https://github.com/NVlabs/stylegan2), with pre-trained models lifted from [Justin Pinkney's consolidated repository](https://github.com/justinpinkney/awesome-pretrained-stylegan2). Custom weights and other GAN architectures can be used as well. Sample output can be found on [YouTube](https://youtu.be/l-nGC-ve7sI) and [Instagram](https://www.instagram.com/lucidsonicdreams/). ## Installation This implementation has been teston on Python 3.6 and 3.7. As per NVLabs' TensorFlow implementation of StyleGAN2, TensorFlow 1.15 is required. TensorFlow 2.x is not supported. To install, simply run: ```pip install lucidsonicdreams``` ## Usage You may refer to the [Lucid Sonic Dreams Tutorial Notebook](https://colab.research.google.com/drive/1Y5i50xSFIuN3V4Md8TB30_GOAtts7RQD?usp=sharing) for full parameter descriptions and sample code templates. A basic visualization snippet is also found below. ### Basic Visualization ``` from lucidsonicdreams import LucidSonicDream L = LucidSonicDream(song = 'song.mp3', style = 'abstract photos') L.hallucinate(file_name = 'song.mp4') ``` %prep %autosetup -n lucidsonicdreams-0.4 %build %py3_build %install %py3_install install -d -m755 %{buildroot}/%{_pkgdocdir} if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi pushd %{buildroot} if [ -d usr/lib ]; then find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/lib64 ]; then find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/bin ]; then find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi if [ -d usr/sbin ]; then find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst fi touch doclist.lst if [ -d usr/share/man ]; then find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst fi popd mv %{buildroot}/filelist.lst . mv %{buildroot}/doclist.lst . %files -n python3-lucidsonicdreams -f filelist.lst %dir %{python3_sitelib}/* %files help -f doclist.lst %{_docdir}/* %changelog * Tue Jun 20 2023 Python_Bot - 0.4-1 - Package Spec generated