1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
%global _empty_manifest_terminate_build 0
Name: python-luciferase
Version: 2.4.5
Release: 1
Summary: Helper functions for luciferase data
License: MIT License
URL: https://gitlab.com/aaylward/luciferase
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/54/6d/d2564e403a1eedfa546319bc74c558fde7860b39f016617cb1fc83fb6516/luciferase-2.4.5.tar.gz
BuildArch: noarch
Requires: python3-estimateratio
Requires: python3-matplotlib
Requires: python3-pandas
Requires: python3-scipy
Requires: python3-seaborn
Requires: python3-xlrd
%description
# luciferase
Tool for plotting luciferase reporter data. Thanks due to Joshua Chiou and Mei-lin Okino for inspiration and contributions.
## Installation
To use `luciferase`, you must first have [python](https://www.python.org/downloads/) installed. Then, you can install `luciferase` using `pip`:
```sh
pip install luciferase
```
or
```sh
pip install --user luciferase
```
## Command-line interface for barplots
## Introduction
This introduction demonstrates a simple analysis of data in Excel format.
Here is our [example dataset](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel.xlsx), `example-excel.xlsx`:

The first row contains headers and subsequent rows contain firefly/renilla ratios normalized to the empty vector.
We can analyze these data by running:
```luciferase-swarmplot example-excel.xlsx example-excel-plot.pdf```
Here is the result:
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-plot.png" width="400"/>
We can also use input data with more columns to produce plots with more bars. For example:

```luciferase-swarmplot example-excel-expanded.xlsx example-excel-expanded-plot.pdf```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-expanded-plot.png" width="400"/>
See the following sections for more details.
### Barplots of enhancer activity
A command-line tool called `luciferase-barplot` for creating bar plots is
included. After installing `luciferase`, you can use it like this:
```sh
luciferase-barplot example.json example.pdf
luciferase-barplot example.csv example.png
luciferase-barplot example.tsv example.svg
luciferase-barplot example.xls example.pdf
luciferase-barplot example.xlsx example.png
```
JSON, CSV, TSV, or Excel files may be used as inputs, and output
can be written in PDF, PNG, or SVG.
See also the help message:
```sh
luciferase-barplot -h
```
Examples of luciferase reporter data in JSON format:
```json
{
"Non-risk, Fwd": [8.354, 12.725, 8.506],
"Risk, Fwd": [5.078, 5.038, 5.661],
"Non-risk, Rev": [9.564, 9.692, 12.622],
"Risk, Rev": [10.777, 11.389, 10.598],
"Empty": [1.042, 0.92, 1.042]
}
```
```json
{
"Alt, MIN6": [5.47, 7.17, 6.15],
"Ref, MIN6": [3.16, 3.04, 4.34],
"Empty, MIN6": [1.07, 0.83, 0.76],
"Alt, ALPHA-TC6": [2.50, 3.47, 3.33],
"Ref, ALPHA-TC6": [2.01, 1.96, 2.31],
"Empty, ALPHA-TC6": [1.042, 0.92, 1.042]
}
```
Examples of luciferase reporter data in TSV format:
```
Non-risk, Fwd Risk, Fwd Non-risk, Rev Risk, Rev Empty
8.354 5.078 9.564 10.777 1.042
12.725 5.038 9.692 11.389 0.92
8.506 5.661 12.622 10.598 1.042
```
```
Ref, untreated Alt, untreated Empty, untreated Ref, dex Alt, dex Empty, dex
33.2 19.7 1.0 149.4 44.6 1.1
30.3 16.2 1.0 99.7 37.6 1.0
33.3 18.3 1.0 124.5 37.7 0.9
```
Significance indicators will be written above the bars: `***` if p<0.001,
`**` if p<0.01, `*` if p<0.05, `ns` otherwise.
Here are the resulting plots:
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-5.png" width="400"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-6.png" width="400"/>
### Barplots of allelic ratio
A second tool called `luciferase-ratioplot` takes the same input data and
produces a comparative plot of allelic ratios:
```sh
luciferase-ratioplot --xlab control dexamethasone --ylab "Ref:Alt ratio" --title Default ratio.json ratio.png
luciferase-ratioplot --xlab control dexamethasone --ylab "Alt:Ref ratio" --title Inverted --invert ratio.json ratio.png
```
The resulting plot shows the estimated allelic ratio of enhancer activity
with confidence intervals (95% by default). Here is an example input dataset
and plot:
JSON:
```json
{
"Ref, untreated": [33.2, 30.3, 33.3],
"Alt, untreated": [19.7, 16.2, 18.3],
"Empty, untreated": [1.0, 1.0, 1.0],
"Ref, dex": [149.4, 99.7, 124.5],
"Alt, dex": [44.6, 37.6, 37.7],
"Empty, dex": [1.1, 1.0, 0.9]
}
```
TSV:
```
Alt, dex Ref, dex Empty, dex Alt, untreated Ref, untreated Empty, untreated
44.6 149.4 1.1 19.7 33.2 1.0
37.6 99.7 1.0 16.2 30.3 1.0
37.7 124.5 0.9 18.3 33.3 1.0
```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/ratio.png" width="200"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/ratio-invert.png" width="200"/>
## Meta-analysis
For this section, we'll use another included command called
`luciferase-swarmplot`. It functions exactly like `luciferase-barplot` except
that individual data points will be plotted over the bars.
It may be that we have performed two or more experiments
(from separate minipreps) and wish to meta-analyze the results. As an example,
let's consider the results of two identical experiments on a regulatory
variant at the _SIX3_ locus: [SIX3-MP0](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.json) and [SIX3-MP1](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.json). First we'll plot both datasets separately:
```sh
luciferase-swarmplot six3-mp0.json six3-mp0.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP0'
luciferase-swarmplot six3-mp1.json six3-mp1.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP1'
```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.png" width="400"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.png" width="400"/>
We can see that the results are fairly consistent in character, but checking
the y-axis tells us that they are on different scales. Intuitively, we might
conclude from these results that there are allelic effects under all three
conditions. Ideally though, we would like to use all of the data at once for
one plot to get the most accurate conclusions about allelic effects.
We might simply combine the data into one dataset, (as [here](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.json)) and plot it:
```sh
luciferase-swarmplot six3-meta-nobatch.json six3-meta-nobatch.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C'
```

The bar heights look reasonable, and the allelic effects appear clear from
looking at them, but all of the hypothesis tests returned non-significant
results. What gives?
The answer is that combining data from experiments with different scales
breaks the assumptions of the significance test (a t-test). To meta-analyze
these data in a useful way, we first need to re-normalize the two experiments
to put both of them on the same scale. `luciferase-barplot` and
`luciferase-swarmplot` will re-normalize the data automatically if the dataset
includes an additional entry ("Batch") indicating the batch of each data point,
as in this example:
[SIX3-META](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.json).
```json
{
"Alt, untreated": [19.7, 16.2, 18.3, 6.5, 8.0, 4.4],
"Ref, untreated": [33.2, 30.3, 33.3, 8.4, 13.6, 17.1],
"Empty, untreated": [1.0, 1.0, 1.0, 1.1, 1.0, 0.9],
"Alt, hi_cyt_noTNFA": [11.0, 8.8, 10.1, 3.2, 3.7, 3.3],
"Ref, hi_cyt_noTNFA": [17.1, 16.7, 18.8, 7.6, 6.7, 5.5],
"Empty, hi_cyt_noTNFA": [1.1, 0.9, 1.0, 1.1, 0.9, 1.0],
"Alt, hi_cyt": [10.8, 10.9, 9.1, 3.1, 2.7, 4.0],
"Ref, hi_cyt": [17.8, 16.1, 18.0, 7.7, 7.0, 7.1],
"Empty, hi_cyt": [1.0, 1.0, 1.0, 1.0, 1.0, 1.1],
"Batch": [0, 0, 0, 1, 1, 1]
}
```
Here is what the results look like when they're re-normalized to correct for
batch
```sh
luciferase-swarmplot six3-meta.json six3-meta.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-META'
```

See a more detailed explanation of the normalization procedure [here](https://github.com/anthony-aylward/luciferase/blob/master/example/meta-analysis.pdf)
%package -n python3-luciferase
Summary: Helper functions for luciferase data
Provides: python-luciferase
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-luciferase
# luciferase
Tool for plotting luciferase reporter data. Thanks due to Joshua Chiou and Mei-lin Okino for inspiration and contributions.
## Installation
To use `luciferase`, you must first have [python](https://www.python.org/downloads/) installed. Then, you can install `luciferase` using `pip`:
```sh
pip install luciferase
```
or
```sh
pip install --user luciferase
```
## Command-line interface for barplots
## Introduction
This introduction demonstrates a simple analysis of data in Excel format.
Here is our [example dataset](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel.xlsx), `example-excel.xlsx`:

The first row contains headers and subsequent rows contain firefly/renilla ratios normalized to the empty vector.
We can analyze these data by running:
```luciferase-swarmplot example-excel.xlsx example-excel-plot.pdf```
Here is the result:
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-plot.png" width="400"/>
We can also use input data with more columns to produce plots with more bars. For example:

```luciferase-swarmplot example-excel-expanded.xlsx example-excel-expanded-plot.pdf```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-expanded-plot.png" width="400"/>
See the following sections for more details.
### Barplots of enhancer activity
A command-line tool called `luciferase-barplot` for creating bar plots is
included. After installing `luciferase`, you can use it like this:
```sh
luciferase-barplot example.json example.pdf
luciferase-barplot example.csv example.png
luciferase-barplot example.tsv example.svg
luciferase-barplot example.xls example.pdf
luciferase-barplot example.xlsx example.png
```
JSON, CSV, TSV, or Excel files may be used as inputs, and output
can be written in PDF, PNG, or SVG.
See also the help message:
```sh
luciferase-barplot -h
```
Examples of luciferase reporter data in JSON format:
```json
{
"Non-risk, Fwd": [8.354, 12.725, 8.506],
"Risk, Fwd": [5.078, 5.038, 5.661],
"Non-risk, Rev": [9.564, 9.692, 12.622],
"Risk, Rev": [10.777, 11.389, 10.598],
"Empty": [1.042, 0.92, 1.042]
}
```
```json
{
"Alt, MIN6": [5.47, 7.17, 6.15],
"Ref, MIN6": [3.16, 3.04, 4.34],
"Empty, MIN6": [1.07, 0.83, 0.76],
"Alt, ALPHA-TC6": [2.50, 3.47, 3.33],
"Ref, ALPHA-TC6": [2.01, 1.96, 2.31],
"Empty, ALPHA-TC6": [1.042, 0.92, 1.042]
}
```
Examples of luciferase reporter data in TSV format:
```
Non-risk, Fwd Risk, Fwd Non-risk, Rev Risk, Rev Empty
8.354 5.078 9.564 10.777 1.042
12.725 5.038 9.692 11.389 0.92
8.506 5.661 12.622 10.598 1.042
```
```
Ref, untreated Alt, untreated Empty, untreated Ref, dex Alt, dex Empty, dex
33.2 19.7 1.0 149.4 44.6 1.1
30.3 16.2 1.0 99.7 37.6 1.0
33.3 18.3 1.0 124.5 37.7 0.9
```
Significance indicators will be written above the bars: `***` if p<0.001,
`**` if p<0.01, `*` if p<0.05, `ns` otherwise.
Here are the resulting plots:
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-5.png" width="400"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-6.png" width="400"/>
### Barplots of allelic ratio
A second tool called `luciferase-ratioplot` takes the same input data and
produces a comparative plot of allelic ratios:
```sh
luciferase-ratioplot --xlab control dexamethasone --ylab "Ref:Alt ratio" --title Default ratio.json ratio.png
luciferase-ratioplot --xlab control dexamethasone --ylab "Alt:Ref ratio" --title Inverted --invert ratio.json ratio.png
```
The resulting plot shows the estimated allelic ratio of enhancer activity
with confidence intervals (95% by default). Here is an example input dataset
and plot:
JSON:
```json
{
"Ref, untreated": [33.2, 30.3, 33.3],
"Alt, untreated": [19.7, 16.2, 18.3],
"Empty, untreated": [1.0, 1.0, 1.0],
"Ref, dex": [149.4, 99.7, 124.5],
"Alt, dex": [44.6, 37.6, 37.7],
"Empty, dex": [1.1, 1.0, 0.9]
}
```
TSV:
```
Alt, dex Ref, dex Empty, dex Alt, untreated Ref, untreated Empty, untreated
44.6 149.4 1.1 19.7 33.2 1.0
37.6 99.7 1.0 16.2 30.3 1.0
37.7 124.5 0.9 18.3 33.3 1.0
```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/ratio.png" width="200"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/ratio-invert.png" width="200"/>
## Meta-analysis
For this section, we'll use another included command called
`luciferase-swarmplot`. It functions exactly like `luciferase-barplot` except
that individual data points will be plotted over the bars.
It may be that we have performed two or more experiments
(from separate minipreps) and wish to meta-analyze the results. As an example,
let's consider the results of two identical experiments on a regulatory
variant at the _SIX3_ locus: [SIX3-MP0](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.json) and [SIX3-MP1](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.json). First we'll plot both datasets separately:
```sh
luciferase-swarmplot six3-mp0.json six3-mp0.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP0'
luciferase-swarmplot six3-mp1.json six3-mp1.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP1'
```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.png" width="400"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.png" width="400"/>
We can see that the results are fairly consistent in character, but checking
the y-axis tells us that they are on different scales. Intuitively, we might
conclude from these results that there are allelic effects under all three
conditions. Ideally though, we would like to use all of the data at once for
one plot to get the most accurate conclusions about allelic effects.
We might simply combine the data into one dataset, (as [here](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.json)) and plot it:
```sh
luciferase-swarmplot six3-meta-nobatch.json six3-meta-nobatch.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C'
```

The bar heights look reasonable, and the allelic effects appear clear from
looking at them, but all of the hypothesis tests returned non-significant
results. What gives?
The answer is that combining data from experiments with different scales
breaks the assumptions of the significance test (a t-test). To meta-analyze
these data in a useful way, we first need to re-normalize the two experiments
to put both of them on the same scale. `luciferase-barplot` and
`luciferase-swarmplot` will re-normalize the data automatically if the dataset
includes an additional entry ("Batch") indicating the batch of each data point,
as in this example:
[SIX3-META](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.json).
```json
{
"Alt, untreated": [19.7, 16.2, 18.3, 6.5, 8.0, 4.4],
"Ref, untreated": [33.2, 30.3, 33.3, 8.4, 13.6, 17.1],
"Empty, untreated": [1.0, 1.0, 1.0, 1.1, 1.0, 0.9],
"Alt, hi_cyt_noTNFA": [11.0, 8.8, 10.1, 3.2, 3.7, 3.3],
"Ref, hi_cyt_noTNFA": [17.1, 16.7, 18.8, 7.6, 6.7, 5.5],
"Empty, hi_cyt_noTNFA": [1.1, 0.9, 1.0, 1.1, 0.9, 1.0],
"Alt, hi_cyt": [10.8, 10.9, 9.1, 3.1, 2.7, 4.0],
"Ref, hi_cyt": [17.8, 16.1, 18.0, 7.7, 7.0, 7.1],
"Empty, hi_cyt": [1.0, 1.0, 1.0, 1.0, 1.0, 1.1],
"Batch": [0, 0, 0, 1, 1, 1]
}
```
Here is what the results look like when they're re-normalized to correct for
batch
```sh
luciferase-swarmplot six3-meta.json six3-meta.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-META'
```

See a more detailed explanation of the normalization procedure [here](https://github.com/anthony-aylward/luciferase/blob/master/example/meta-analysis.pdf)
%package help
Summary: Development documents and examples for luciferase
Provides: python3-luciferase-doc
%description help
# luciferase
Tool for plotting luciferase reporter data. Thanks due to Joshua Chiou and Mei-lin Okino for inspiration and contributions.
## Installation
To use `luciferase`, you must first have [python](https://www.python.org/downloads/) installed. Then, you can install `luciferase` using `pip`:
```sh
pip install luciferase
```
or
```sh
pip install --user luciferase
```
## Command-line interface for barplots
## Introduction
This introduction demonstrates a simple analysis of data in Excel format.
Here is our [example dataset](https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel.xlsx), `example-excel.xlsx`:

The first row contains headers and subsequent rows contain firefly/renilla ratios normalized to the empty vector.
We can analyze these data by running:
```luciferase-swarmplot example-excel.xlsx example-excel-plot.pdf```
Here is the result:
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-plot.png" width="400"/>
We can also use input data with more columns to produce plots with more bars. For example:

```luciferase-swarmplot example-excel-expanded.xlsx example-excel-expanded-plot.pdf```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-excel-expanded-plot.png" width="400"/>
See the following sections for more details.
### Barplots of enhancer activity
A command-line tool called `luciferase-barplot` for creating bar plots is
included. After installing `luciferase`, you can use it like this:
```sh
luciferase-barplot example.json example.pdf
luciferase-barplot example.csv example.png
luciferase-barplot example.tsv example.svg
luciferase-barplot example.xls example.pdf
luciferase-barplot example.xlsx example.png
```
JSON, CSV, TSV, or Excel files may be used as inputs, and output
can be written in PDF, PNG, or SVG.
See also the help message:
```sh
luciferase-barplot -h
```
Examples of luciferase reporter data in JSON format:
```json
{
"Non-risk, Fwd": [8.354, 12.725, 8.506],
"Risk, Fwd": [5.078, 5.038, 5.661],
"Non-risk, Rev": [9.564, 9.692, 12.622],
"Risk, Rev": [10.777, 11.389, 10.598],
"Empty": [1.042, 0.92, 1.042]
}
```
```json
{
"Alt, MIN6": [5.47, 7.17, 6.15],
"Ref, MIN6": [3.16, 3.04, 4.34],
"Empty, MIN6": [1.07, 0.83, 0.76],
"Alt, ALPHA-TC6": [2.50, 3.47, 3.33],
"Ref, ALPHA-TC6": [2.01, 1.96, 2.31],
"Empty, ALPHA-TC6": [1.042, 0.92, 1.042]
}
```
Examples of luciferase reporter data in TSV format:
```
Non-risk, Fwd Risk, Fwd Non-risk, Rev Risk, Rev Empty
8.354 5.078 9.564 10.777 1.042
12.725 5.038 9.692 11.389 0.92
8.506 5.661 12.622 10.598 1.042
```
```
Ref, untreated Alt, untreated Empty, untreated Ref, dex Alt, dex Empty, dex
33.2 19.7 1.0 149.4 44.6 1.1
30.3 16.2 1.0 99.7 37.6 1.0
33.3 18.3 1.0 124.5 37.7 0.9
```
Significance indicators will be written above the bars: `***` if p<0.001,
`**` if p<0.01, `*` if p<0.05, `ns` otherwise.
Here are the resulting plots:
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-5.png" width="400"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/example-6.png" width="400"/>
### Barplots of allelic ratio
A second tool called `luciferase-ratioplot` takes the same input data and
produces a comparative plot of allelic ratios:
```sh
luciferase-ratioplot --xlab control dexamethasone --ylab "Ref:Alt ratio" --title Default ratio.json ratio.png
luciferase-ratioplot --xlab control dexamethasone --ylab "Alt:Ref ratio" --title Inverted --invert ratio.json ratio.png
```
The resulting plot shows the estimated allelic ratio of enhancer activity
with confidence intervals (95% by default). Here is an example input dataset
and plot:
JSON:
```json
{
"Ref, untreated": [33.2, 30.3, 33.3],
"Alt, untreated": [19.7, 16.2, 18.3],
"Empty, untreated": [1.0, 1.0, 1.0],
"Ref, dex": [149.4, 99.7, 124.5],
"Alt, dex": [44.6, 37.6, 37.7],
"Empty, dex": [1.1, 1.0, 0.9]
}
```
TSV:
```
Alt, dex Ref, dex Empty, dex Alt, untreated Ref, untreated Empty, untreated
44.6 149.4 1.1 19.7 33.2 1.0
37.6 99.7 1.0 16.2 30.3 1.0
37.7 124.5 0.9 18.3 33.3 1.0
```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/ratio.png" width="200"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/ratio-invert.png" width="200"/>
## Meta-analysis
For this section, we'll use another included command called
`luciferase-swarmplot`. It functions exactly like `luciferase-barplot` except
that individual data points will be plotted over the bars.
It may be that we have performed two or more experiments
(from separate minipreps) and wish to meta-analyze the results. As an example,
let's consider the results of two identical experiments on a regulatory
variant at the _SIX3_ locus: [SIX3-MP0](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.json) and [SIX3-MP1](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.json). First we'll plot both datasets separately:
```sh
luciferase-swarmplot six3-mp0.json six3-mp0.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP0'
luciferase-swarmplot six3-mp1.json six3-mp1.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-MP1'
```
<img src="https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp0.png" width="400"/><img src="https://github.com/anthony-aylward/luciferase/raw/master/example/six3-mp1.png" width="400"/>
We can see that the results are fairly consistent in character, but checking
the y-axis tells us that they are on different scales. Intuitively, we might
conclude from these results that there are allelic effects under all three
conditions. Ideally though, we would like to use all of the data at once for
one plot to get the most accurate conclusions about allelic effects.
We might simply combine the data into one dataset, (as [here](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta-nobatch.json)) and plot it:
```sh
luciferase-swarmplot six3-meta-nobatch.json six3-meta-nobatch.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C'
```

The bar heights look reasonable, and the allelic effects appear clear from
looking at them, but all of the hypothesis tests returned non-significant
results. What gives?
The answer is that combining data from experiments with different scales
breaks the assumptions of the significance test (a t-test). To meta-analyze
these data in a useful way, we first need to re-normalize the two experiments
to put both of them on the same scale. `luciferase-barplot` and
`luciferase-swarmplot` will re-normalize the data automatically if the dataset
includes an additional entry ("Batch") indicating the batch of each data point,
as in this example:
[SIX3-META](https://github.com/anthony-aylward/luciferase/raw/master/example/six3-meta.json).
```json
{
"Alt, untreated": [19.7, 16.2, 18.3, 6.5, 8.0, 4.4],
"Ref, untreated": [33.2, 30.3, 33.3, 8.4, 13.6, 17.1],
"Empty, untreated": [1.0, 1.0, 1.0, 1.1, 1.0, 0.9],
"Alt, hi_cyt_noTNFA": [11.0, 8.8, 10.1, 3.2, 3.7, 3.3],
"Ref, hi_cyt_noTNFA": [17.1, 16.7, 18.8, 7.6, 6.7, 5.5],
"Empty, hi_cyt_noTNFA": [1.1, 0.9, 1.0, 1.1, 0.9, 1.0],
"Alt, hi_cyt": [10.8, 10.9, 9.1, 3.1, 2.7, 4.0],
"Ref, hi_cyt": [17.8, 16.1, 18.0, 7.7, 7.0, 7.1],
"Empty, hi_cyt": [1.0, 1.0, 1.0, 1.0, 1.0, 1.1],
"Batch": [0, 0, 0, 1, 1, 1]
}
```
Here is what the results look like when they're re-normalized to correct for
batch
```sh
luciferase-swarmplot six3-meta.json six3-meta.png --light-colors '#DECBE4' '#FED9A6' '#FBB4AE' --dark-colors '#984EA3' '#FF7F00' '#E41A1C' --title 'SIX3-META'
```

See a more detailed explanation of the normalization procedure [here](https://github.com/anthony-aylward/luciferase/blob/master/example/meta-analysis.pdf)
%prep
%autosetup -n luciferase-2.4.5
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-luciferase -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 2.4.5-1
- Package Spec generated
|