1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
|
%global _empty_manifest_terminate_build 0
Name: python-ludwig
Version: 0.7.4
Release: 1
Summary: Declarative machine learning: End-to-end machine learning pipelines using data-driven configurations.
License: Apache 2.0
URL: https://github.com/ludwig-ai/ludwig
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/01/46/73a9a279ce63ab0de902ec472bf27c7f86779d72ca3de7dc68f47b374336/ludwig-0.7.4.tar.gz
BuildArch: noarch
%description

<div align="center">
[](https://badge.fury.io/py/ludwig)
[](https://img.shields.io/github/commit-activity/m/ludwig-ai/ludwig)
[](https://bestpractices.coreinfrastructure.org/projects/4210)
[](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
[](https://hub.docker.com/r/ludwigai)
[](https://pepy.tech/project/ludwig)
[](https://github.com/ludwig-ai/ludwig/blob/master/LICENSE)
[](https://twitter.com/ludwig_ai)
Full Documentation: [ludwig.ai](https://ludwig.ai)
</div>
# What is Ludwig?
Ludwig is a [declarative machine learning framework](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/what_is_ludwig/#why-declarative-machine-learning-systems)
that makes it easy to define machine learning pipelines using a simple and
flexible data-driven configuration system. Ludwig is suitable for a wide variety
of AI tasks, and is hosted by the
[Linux Foundation AI & Data](https://lfaidata.foundation/).
The configuration declares the input and output features, with their respective
data types. Users can also specify additional parameters to preprocess, encode,
and decode features, load from pre-trained models, compose the internal model
architecture, set training parameters, or run hyperparameter optimization.

Ludwig will build an end-to-end machine learning pipeline automatically, using
whatever is explicitly specified in the configuration, while falling back to
smart defaults for any parameters that are not.
# Declarative Machine Learning
Ludwig’s declarative approach to machine learning empowers you to have full
control of the components of the machine learning pipeline that you care about,
while leaving it up to Ludwig to make reasonable decisions for the rest.

Analysts, scientists, engineers, and researchers use Ludwig to explore
state-of-the-art model architectures, run hyperparameter search, scale up to
larger than available memory datasets and multi-node clusters, and finally
serve the best model in production.
Finally, the use of abstract interfaces throughout the codebase makes it easy
for users to extend Ludwig by adding new models, metrics, losses, and
preprocessing functions that can be registered to make them immediately useable
in the same unified configuration system.
# Main Features
- **[Data-Driven configuration system](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/how_ludwig_works)**
A config YAML file that describes the schema of your data (input features,
output features, and their types) is all you need to start training deep
learning models. Ludwig uses declared features to compose a deep learning
model accordingly.
```yaml
input_features:
- name: data_column_1
type: number
- name: data_column_2
type: category
- name: data_column_3
type: text
- name: data_column_4
type: image
...
output_features:
- name: data_column_5
type: number
- name: data_column_6
type: category
...
```
- **[Training, prediction, and evaluation from the command line](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/command_line_interface)**
Simple commands can be used to train models and predict new data.
```shell
ludwig train --config config.yaml --dataset data.csv
ludwig predict --model_path results/experiment_run/model --dataset test.csv
ludwig eval --model_path results/experiment_run/model --dataset test.csv
```
- **[Programmatic API](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/api/LudwigModel)**
Ludwig also provides a simple programmatic API for all of the functionality
described above and more.
```python
from ludwig.api import LudwigModel
# train a model
config = {
"input_features": [...],
"output_features": [...],
}
model = LudwigModel(config)
data = pd.read_csv("data.csv")
train_stats, _, model_dir = model.train(data)
# or load a model
model = LudwigModel.load(model_dir)
# obtain predictions
predictions = model.predict(data)
```
- **[Distributed training](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/distributed_training)**
Train models in a distributed setting using [Horovod](https://github.com/horovod/horovod),
which allows training on a single machine with multiple GPUs or multiple
machines with multiple GPUs.
- **[Serving](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/serving)**
Serve models using FastAPI.
```shell
ludwig serve --model_path ./results/experiment_run/model
curl http://0.0.0.0:8000/predict -X POST -F "movie_title=Friends With Money" -F "content_rating=R" -F "genres=Art House & International, Comedy, Drama" -F "runtime=88.0" -F "top_critic=TRUE" -F "review_content=The cast is terrific, the movie isn't."
```
- **[Hyperparameter optimization](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/hyperopt)**
Run hyperparameter optimization locally or using [Ray Tune](https://docs.ray.io/en/latest/tune/index.html).
```shell
ludwig hyperopt --config config.yaml --dataset data.csv
```
- **[AutoML](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/automl)**
Ludwig AutoML takes a dataset, the target column, and a time budget, and
returns a trained Ludwig model.
- **[Third-Party integrations](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/integrations)**
Ludwig provides an extendable interface to integrate with third-party
systems for tracking experiments. Third-party integrations exist for Comet
ML, Weights & Biases, WhyLabs, and MLFlow.
- **[Extensibility](https://ludwig-ai.github.io/ludwig-docs/latest/developer_guide)**
Ludwig is built from the ground up with extensibility in mind. It is easy to
add new data types by implementing clear, well-documented abstract classes
that define functions to preprocess, encode, and decode data.
Furthermore, new `torch nn.Module` models can be easily added by them to a
registry. This encourages reuse and sharing new models with the community.
Refer to the [Developer Guide](https://ludwig-ai.github.io/ludwig-docs/latest/developer_guide)
for further details.
# Quick Start
For a full tutorial, check out the official [getting started guide](https://ludwig-ai.github.io/ludwig-docs/latest/getting_started/),
or take a look at end-to-end [Examples](https://ludwig-ai.github.io/ludwig-docs/latest/examples).
## Step 1: Install
Install from PyPi. Be aware that Ludwig requires Python 3.8+.
```shell
pip install ludwig
```
## Step 2: Define a configuration
Create a config that describes the schema of your data.
Assume we have a text classification task, with data containing a sentence and class column like the following.
| sentence | class |
| :----------------------------------: | :------: |
| Former president Barack Obama ... | politics |
| Juventus hired Cristiano Ronaldo ... | sport |
| LeBron James joins the Lakers ... | sport |
| ... | ... |
A configuration will look like this.
```yaml
input_features:
- name: sentence
type: text
output_features:
- name: class
type: category
```
Starting from a simple config like the one above, any and all aspects of the model architecture, training loop,
hyperparameter search, and backend infrastructure can be modified as additional fields in the declarative configuration
to customize the pipeline to meet your requirements.
```yaml
input_features:
- name: sentence
type: text
encoder: transformer
layers: 6
embedding_size: 512
output_features:
- name: class
type: category
loss: cross_entropy
trainer:
epochs: 50
batch_size: 64
optimizer:
type: adamw
beat1: 0.9
learning_rate: 0.001
backend:
type: ray
cache_format: parquet
processor:
type: dask
trainer:
use_gpu: true
num_workers: 4
resources_per_worker:
CPU: 4
GPU: 1
hyperopt:
metric: f1
sampler: random
parameters:
title.num_layers:
lower: 1
upper: 5
trainer.learning_rate:
values: [0.01, 0.003, 0.001]
```
For details on what can be configured, check out [Ludwig Configuration](https://ludwig-ai.github.io/ludwig-docs/latest/configuration/)
docs.
## Step 3: Train a model
Simple commands can be used to train models and predict new data.
```shell
ludwig train --config config.yaml --dataset data.csv
```
## Step 4: Predict and evaluate
The training process will produce a model that can be used for evaluating on and obtaining predictions for new data.
```shell
ludwig predict --model path/to/trained/model --dataset heldout.csv
ludwig evaluate --model path/to/trained/model --dataset heldout.csv
```
## Step 5: Visualize
Ludwig provides a suite of visualization tools allows you to analyze models' training and test performance and to
compare them.
```shell
ludwig visualize --visualization compare_performance --test_statistics path/to/test_statistics_model_1.json path/to/test_statistics_model_2.json
```
For the full set of visualization see the [Visualization Guide](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/visualizations).
## Step 6: Happy modeling
Try applying Ludwig to your data. [Reach out](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
if you have any questions.
# Advantages
- **Minimal machine learning boilerplate**
Ludwig takes care of the engineering complexity of machine learning out of
the box, enabling research scientists to focus on building models at the
highest level of abstraction. Data preprocessing, hyperparameter
optimization, device management, and distributed training for
`torch.nn.Module` models come completely free.
- **Easily build your benchmarks**
Creating a state-of-the-art baseline and comparing it with a new model is a
simple config change.
- **Easily apply new architectures to multiple problems and datasets**
Apply new models across the extensive set of tasks and datasets that Ludwig
supports. Ludwig includes a
[full benchmarking toolkit](https://arxiv.org/abs/2111.04260) accessible to
any user, for running experiments with multiple models across multiple
datasets with just a simple configuration.
- **Highly configurable data preprocessing, modeling, and metrics**
Any and all aspects of the model architecture, training loop, hyperparameter
search, and backend infrastructure can be modified as additional fields in
the declarative configuration to customize the pipeline to meet your
requirements. For details on what can be configured, check out
[Ludwig Configuration](https://ludwig-ai.github.io/ludwig-docs/latest/configuration/)
docs.
- **Multi-modal, multi-task learning out-of-the-box**
Mix and match tabular data, text, images, and even audio into complex model
configurations without writing code.
- **Rich model exporting and tracking**
Automatically track all trials and metrics with tools like Tensorboard,
Comet ML, Weights & Biases, MLFlow, and Aim Stack.
- **Automatically scale training to multi-GPU, multi-node clusters**
Go from training on your local machine to the cloud without code changes.
- **Low-code interface for state-of-the-art models, including pre-trained Huggingface Transformers**
Ludwig also natively integrates with pre-trained models, such as the ones
available in [Huggingface Transformers](https://huggingface.co/docs/transformers/index).
Users can choose from a vast collection of state-of-the-art pre-trained
PyTorch models to use without needing to write any code at all. For example,
training a BERT-based sentiment analysis model with Ludwig is as simple as:
```shell
ludwig train --dataset sst5 --config_str “{input_features: [{name: sentence, type: text, encoder: bert}], output_features: [{name: label, type: category}]}”
```
- **Low-code interface for AutoML**
[Ludwig AutoML](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/automl/)
allows users to obtain trained models by providing just a dataset, the
target column, and a time budget.
```python
auto_train_results = ludwig.automl.auto_train(dataset=my_dataset_df, target=target_column_name, time_limit_s=7200)
```
- **Easy productionisation**
Ludwig makes it easy to serve deep learning models, including on GPUs.
Launch a REST API for your trained Ludwig model.
```shell
ludwig serve --model_path=/path/to/model
```
Ludwig supports exporting models to efficient Torschscript bundles.
```shell
ludwig export_torchscript -–model_path=/path/to/model
```
# Tutorials
- [Text Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/text_classification)
- [Tabular Data Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/adult_census_income)
- [Image Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/mnist)
- [Multimodal Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multimodal_classification)
# Example Use Cases
- [Named Entity Recognition Tagging](https://ludwig-ai.github.io/ludwig-docs/latest/examples/ner_tagging)
- [Natural Language Understanding](https://ludwig-ai.github.io/ludwig-docs/latest/examples/nlu)
- [Machine Translation](https://ludwig-ai.github.io/ludwig-docs/latest/examples/machine_translation)
- [Chit-Chat Dialogue Modeling through seq2seq](https://ludwig-ai.github.io/ludwig-docs/latest/examples/seq2seq)
- [Sentiment Analysis](https://ludwig-ai.github.io/ludwig-docs/latest/examples/sentiment_analysis)
- [One-shot Learning with Siamese Networks](https://ludwig-ai.github.io/ludwig-docs/latest/examples/oneshot)
- [Visual Question Answering](https://ludwig-ai.github.io/ludwig-docs/latest/examples/visual_qa)
- [Spoken Digit Speech Recognition](https://ludwig-ai.github.io/ludwig-docs/latest/examples/speech_recognition)
- [Speaker Verification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/speaker_verification)
- [Binary Classification (Titanic)](https://ludwig-ai.github.io/ludwig-docs/latest/examples/titanic)
- [Timeseries forecasting](https://ludwig-ai.github.io/ludwig-docs/latest/examples/forecasting)
- [Timeseries forecasting (Weather)](https://ludwig-ai.github.io/ludwig-docs/latest/examples/weather)
- [Movie rating prediction](https://ludwig-ai.github.io/ludwig-docs/latest/examples/movie_ratings)
- [Multi-label classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multi_label)
- [Multi-Task Learning](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multi_task)
- [Simple Regression: Fuel Efficiency Prediction](https://ludwig-ai.github.io/ludwig-docs/latest/examples/fuel_efficiency)
- [Fraud Detection](https://ludwig-ai.github.io/ludwig-docs/latest/examples/fraud)
# More Information
Read our publications on [Ludwig](https://arxiv.org/pdf/1909.07930.pdf), [declarative ML](https://arxiv.org/pdf/2107.08148.pdf), and [Ludwig’s SoTA benchmarks](https://openreview.net/pdf?id=hwjnu6qW7E4).
Learn more about [how Ludwig works](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/how_ludwig_works/), [how to get started](https://ludwig-ai.github.io/ludwig-docs/latest/getting_started/), and work through more [examples](https://ludwig-ai.github.io/ludwig-docs/latest/examples).
If you are interested in contributing, have questions, comments, or thoughts to share, or if you just want to be in the
know, please consider [joining the Ludwig Slack](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ) and follow us on [Twitter](https://twitter.com/ludwig_ai)!
# Join the community to build Ludwig with us
Ludwig is an actively managed open-source project that relies on contributions from folks just like
you. Consider joining the active group of Ludwig contributors to make Ludwig an even
more accessible and feature rich framework for everyone to use!
<a href="https://github.com/ludwig-ai/ludwig/graphs/contributors">
<img src="https://contrib.rocks/image?repo=ludwig-ai/ludwig" />
</a><br/>
# Getting Involved
- [Slack](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
- [Twitter](https://twitter.com/ludwig_ai)
- [Medium](https://medium.com/ludwig-ai)
- [GitHub Issues](https://github.com/ludwig-ai/ludwig/issues)
%package -n python3-ludwig
Summary: Declarative machine learning: End-to-end machine learning pipelines using data-driven configurations.
Provides: python-ludwig
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-ludwig

<div align="center">
[](https://badge.fury.io/py/ludwig)
[](https://img.shields.io/github/commit-activity/m/ludwig-ai/ludwig)
[](https://bestpractices.coreinfrastructure.org/projects/4210)
[](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
[](https://hub.docker.com/r/ludwigai)
[](https://pepy.tech/project/ludwig)
[](https://github.com/ludwig-ai/ludwig/blob/master/LICENSE)
[](https://twitter.com/ludwig_ai)
Full Documentation: [ludwig.ai](https://ludwig.ai)
</div>
# What is Ludwig?
Ludwig is a [declarative machine learning framework](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/what_is_ludwig/#why-declarative-machine-learning-systems)
that makes it easy to define machine learning pipelines using a simple and
flexible data-driven configuration system. Ludwig is suitable for a wide variety
of AI tasks, and is hosted by the
[Linux Foundation AI & Data](https://lfaidata.foundation/).
The configuration declares the input and output features, with their respective
data types. Users can also specify additional parameters to preprocess, encode,
and decode features, load from pre-trained models, compose the internal model
architecture, set training parameters, or run hyperparameter optimization.

Ludwig will build an end-to-end machine learning pipeline automatically, using
whatever is explicitly specified in the configuration, while falling back to
smart defaults for any parameters that are not.
# Declarative Machine Learning
Ludwig’s declarative approach to machine learning empowers you to have full
control of the components of the machine learning pipeline that you care about,
while leaving it up to Ludwig to make reasonable decisions for the rest.

Analysts, scientists, engineers, and researchers use Ludwig to explore
state-of-the-art model architectures, run hyperparameter search, scale up to
larger than available memory datasets and multi-node clusters, and finally
serve the best model in production.
Finally, the use of abstract interfaces throughout the codebase makes it easy
for users to extend Ludwig by adding new models, metrics, losses, and
preprocessing functions that can be registered to make them immediately useable
in the same unified configuration system.
# Main Features
- **[Data-Driven configuration system](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/how_ludwig_works)**
A config YAML file that describes the schema of your data (input features,
output features, and their types) is all you need to start training deep
learning models. Ludwig uses declared features to compose a deep learning
model accordingly.
```yaml
input_features:
- name: data_column_1
type: number
- name: data_column_2
type: category
- name: data_column_3
type: text
- name: data_column_4
type: image
...
output_features:
- name: data_column_5
type: number
- name: data_column_6
type: category
...
```
- **[Training, prediction, and evaluation from the command line](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/command_line_interface)**
Simple commands can be used to train models and predict new data.
```shell
ludwig train --config config.yaml --dataset data.csv
ludwig predict --model_path results/experiment_run/model --dataset test.csv
ludwig eval --model_path results/experiment_run/model --dataset test.csv
```
- **[Programmatic API](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/api/LudwigModel)**
Ludwig also provides a simple programmatic API for all of the functionality
described above and more.
```python
from ludwig.api import LudwigModel
# train a model
config = {
"input_features": [...],
"output_features": [...],
}
model = LudwigModel(config)
data = pd.read_csv("data.csv")
train_stats, _, model_dir = model.train(data)
# or load a model
model = LudwigModel.load(model_dir)
# obtain predictions
predictions = model.predict(data)
```
- **[Distributed training](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/distributed_training)**
Train models in a distributed setting using [Horovod](https://github.com/horovod/horovod),
which allows training on a single machine with multiple GPUs or multiple
machines with multiple GPUs.
- **[Serving](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/serving)**
Serve models using FastAPI.
```shell
ludwig serve --model_path ./results/experiment_run/model
curl http://0.0.0.0:8000/predict -X POST -F "movie_title=Friends With Money" -F "content_rating=R" -F "genres=Art House & International, Comedy, Drama" -F "runtime=88.0" -F "top_critic=TRUE" -F "review_content=The cast is terrific, the movie isn't."
```
- **[Hyperparameter optimization](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/hyperopt)**
Run hyperparameter optimization locally or using [Ray Tune](https://docs.ray.io/en/latest/tune/index.html).
```shell
ludwig hyperopt --config config.yaml --dataset data.csv
```
- **[AutoML](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/automl)**
Ludwig AutoML takes a dataset, the target column, and a time budget, and
returns a trained Ludwig model.
- **[Third-Party integrations](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/integrations)**
Ludwig provides an extendable interface to integrate with third-party
systems for tracking experiments. Third-party integrations exist for Comet
ML, Weights & Biases, WhyLabs, and MLFlow.
- **[Extensibility](https://ludwig-ai.github.io/ludwig-docs/latest/developer_guide)**
Ludwig is built from the ground up with extensibility in mind. It is easy to
add new data types by implementing clear, well-documented abstract classes
that define functions to preprocess, encode, and decode data.
Furthermore, new `torch nn.Module` models can be easily added by them to a
registry. This encourages reuse and sharing new models with the community.
Refer to the [Developer Guide](https://ludwig-ai.github.io/ludwig-docs/latest/developer_guide)
for further details.
# Quick Start
For a full tutorial, check out the official [getting started guide](https://ludwig-ai.github.io/ludwig-docs/latest/getting_started/),
or take a look at end-to-end [Examples](https://ludwig-ai.github.io/ludwig-docs/latest/examples).
## Step 1: Install
Install from PyPi. Be aware that Ludwig requires Python 3.8+.
```shell
pip install ludwig
```
## Step 2: Define a configuration
Create a config that describes the schema of your data.
Assume we have a text classification task, with data containing a sentence and class column like the following.
| sentence | class |
| :----------------------------------: | :------: |
| Former president Barack Obama ... | politics |
| Juventus hired Cristiano Ronaldo ... | sport |
| LeBron James joins the Lakers ... | sport |
| ... | ... |
A configuration will look like this.
```yaml
input_features:
- name: sentence
type: text
output_features:
- name: class
type: category
```
Starting from a simple config like the one above, any and all aspects of the model architecture, training loop,
hyperparameter search, and backend infrastructure can be modified as additional fields in the declarative configuration
to customize the pipeline to meet your requirements.
```yaml
input_features:
- name: sentence
type: text
encoder: transformer
layers: 6
embedding_size: 512
output_features:
- name: class
type: category
loss: cross_entropy
trainer:
epochs: 50
batch_size: 64
optimizer:
type: adamw
beat1: 0.9
learning_rate: 0.001
backend:
type: ray
cache_format: parquet
processor:
type: dask
trainer:
use_gpu: true
num_workers: 4
resources_per_worker:
CPU: 4
GPU: 1
hyperopt:
metric: f1
sampler: random
parameters:
title.num_layers:
lower: 1
upper: 5
trainer.learning_rate:
values: [0.01, 0.003, 0.001]
```
For details on what can be configured, check out [Ludwig Configuration](https://ludwig-ai.github.io/ludwig-docs/latest/configuration/)
docs.
## Step 3: Train a model
Simple commands can be used to train models and predict new data.
```shell
ludwig train --config config.yaml --dataset data.csv
```
## Step 4: Predict and evaluate
The training process will produce a model that can be used for evaluating on and obtaining predictions for new data.
```shell
ludwig predict --model path/to/trained/model --dataset heldout.csv
ludwig evaluate --model path/to/trained/model --dataset heldout.csv
```
## Step 5: Visualize
Ludwig provides a suite of visualization tools allows you to analyze models' training and test performance and to
compare them.
```shell
ludwig visualize --visualization compare_performance --test_statistics path/to/test_statistics_model_1.json path/to/test_statistics_model_2.json
```
For the full set of visualization see the [Visualization Guide](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/visualizations).
## Step 6: Happy modeling
Try applying Ludwig to your data. [Reach out](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
if you have any questions.
# Advantages
- **Minimal machine learning boilerplate**
Ludwig takes care of the engineering complexity of machine learning out of
the box, enabling research scientists to focus on building models at the
highest level of abstraction. Data preprocessing, hyperparameter
optimization, device management, and distributed training for
`torch.nn.Module` models come completely free.
- **Easily build your benchmarks**
Creating a state-of-the-art baseline and comparing it with a new model is a
simple config change.
- **Easily apply new architectures to multiple problems and datasets**
Apply new models across the extensive set of tasks and datasets that Ludwig
supports. Ludwig includes a
[full benchmarking toolkit](https://arxiv.org/abs/2111.04260) accessible to
any user, for running experiments with multiple models across multiple
datasets with just a simple configuration.
- **Highly configurable data preprocessing, modeling, and metrics**
Any and all aspects of the model architecture, training loop, hyperparameter
search, and backend infrastructure can be modified as additional fields in
the declarative configuration to customize the pipeline to meet your
requirements. For details on what can be configured, check out
[Ludwig Configuration](https://ludwig-ai.github.io/ludwig-docs/latest/configuration/)
docs.
- **Multi-modal, multi-task learning out-of-the-box**
Mix and match tabular data, text, images, and even audio into complex model
configurations without writing code.
- **Rich model exporting and tracking**
Automatically track all trials and metrics with tools like Tensorboard,
Comet ML, Weights & Biases, MLFlow, and Aim Stack.
- **Automatically scale training to multi-GPU, multi-node clusters**
Go from training on your local machine to the cloud without code changes.
- **Low-code interface for state-of-the-art models, including pre-trained Huggingface Transformers**
Ludwig also natively integrates with pre-trained models, such as the ones
available in [Huggingface Transformers](https://huggingface.co/docs/transformers/index).
Users can choose from a vast collection of state-of-the-art pre-trained
PyTorch models to use without needing to write any code at all. For example,
training a BERT-based sentiment analysis model with Ludwig is as simple as:
```shell
ludwig train --dataset sst5 --config_str “{input_features: [{name: sentence, type: text, encoder: bert}], output_features: [{name: label, type: category}]}”
```
- **Low-code interface for AutoML**
[Ludwig AutoML](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/automl/)
allows users to obtain trained models by providing just a dataset, the
target column, and a time budget.
```python
auto_train_results = ludwig.automl.auto_train(dataset=my_dataset_df, target=target_column_name, time_limit_s=7200)
```
- **Easy productionisation**
Ludwig makes it easy to serve deep learning models, including on GPUs.
Launch a REST API for your trained Ludwig model.
```shell
ludwig serve --model_path=/path/to/model
```
Ludwig supports exporting models to efficient Torschscript bundles.
```shell
ludwig export_torchscript -–model_path=/path/to/model
```
# Tutorials
- [Text Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/text_classification)
- [Tabular Data Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/adult_census_income)
- [Image Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/mnist)
- [Multimodal Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multimodal_classification)
# Example Use Cases
- [Named Entity Recognition Tagging](https://ludwig-ai.github.io/ludwig-docs/latest/examples/ner_tagging)
- [Natural Language Understanding](https://ludwig-ai.github.io/ludwig-docs/latest/examples/nlu)
- [Machine Translation](https://ludwig-ai.github.io/ludwig-docs/latest/examples/machine_translation)
- [Chit-Chat Dialogue Modeling through seq2seq](https://ludwig-ai.github.io/ludwig-docs/latest/examples/seq2seq)
- [Sentiment Analysis](https://ludwig-ai.github.io/ludwig-docs/latest/examples/sentiment_analysis)
- [One-shot Learning with Siamese Networks](https://ludwig-ai.github.io/ludwig-docs/latest/examples/oneshot)
- [Visual Question Answering](https://ludwig-ai.github.io/ludwig-docs/latest/examples/visual_qa)
- [Spoken Digit Speech Recognition](https://ludwig-ai.github.io/ludwig-docs/latest/examples/speech_recognition)
- [Speaker Verification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/speaker_verification)
- [Binary Classification (Titanic)](https://ludwig-ai.github.io/ludwig-docs/latest/examples/titanic)
- [Timeseries forecasting](https://ludwig-ai.github.io/ludwig-docs/latest/examples/forecasting)
- [Timeseries forecasting (Weather)](https://ludwig-ai.github.io/ludwig-docs/latest/examples/weather)
- [Movie rating prediction](https://ludwig-ai.github.io/ludwig-docs/latest/examples/movie_ratings)
- [Multi-label classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multi_label)
- [Multi-Task Learning](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multi_task)
- [Simple Regression: Fuel Efficiency Prediction](https://ludwig-ai.github.io/ludwig-docs/latest/examples/fuel_efficiency)
- [Fraud Detection](https://ludwig-ai.github.io/ludwig-docs/latest/examples/fraud)
# More Information
Read our publications on [Ludwig](https://arxiv.org/pdf/1909.07930.pdf), [declarative ML](https://arxiv.org/pdf/2107.08148.pdf), and [Ludwig’s SoTA benchmarks](https://openreview.net/pdf?id=hwjnu6qW7E4).
Learn more about [how Ludwig works](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/how_ludwig_works/), [how to get started](https://ludwig-ai.github.io/ludwig-docs/latest/getting_started/), and work through more [examples](https://ludwig-ai.github.io/ludwig-docs/latest/examples).
If you are interested in contributing, have questions, comments, or thoughts to share, or if you just want to be in the
know, please consider [joining the Ludwig Slack](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ) and follow us on [Twitter](https://twitter.com/ludwig_ai)!
# Join the community to build Ludwig with us
Ludwig is an actively managed open-source project that relies on contributions from folks just like
you. Consider joining the active group of Ludwig contributors to make Ludwig an even
more accessible and feature rich framework for everyone to use!
<a href="https://github.com/ludwig-ai/ludwig/graphs/contributors">
<img src="https://contrib.rocks/image?repo=ludwig-ai/ludwig" />
</a><br/>
# Getting Involved
- [Slack](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
- [Twitter](https://twitter.com/ludwig_ai)
- [Medium](https://medium.com/ludwig-ai)
- [GitHub Issues](https://github.com/ludwig-ai/ludwig/issues)
%package help
Summary: Development documents and examples for ludwig
Provides: python3-ludwig-doc
%description help

<div align="center">
[](https://badge.fury.io/py/ludwig)
[](https://img.shields.io/github/commit-activity/m/ludwig-ai/ludwig)
[](https://bestpractices.coreinfrastructure.org/projects/4210)
[](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
[](https://hub.docker.com/r/ludwigai)
[](https://pepy.tech/project/ludwig)
[](https://github.com/ludwig-ai/ludwig/blob/master/LICENSE)
[](https://twitter.com/ludwig_ai)
Full Documentation: [ludwig.ai](https://ludwig.ai)
</div>
# What is Ludwig?
Ludwig is a [declarative machine learning framework](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/what_is_ludwig/#why-declarative-machine-learning-systems)
that makes it easy to define machine learning pipelines using a simple and
flexible data-driven configuration system. Ludwig is suitable for a wide variety
of AI tasks, and is hosted by the
[Linux Foundation AI & Data](https://lfaidata.foundation/).
The configuration declares the input and output features, with their respective
data types. Users can also specify additional parameters to preprocess, encode,
and decode features, load from pre-trained models, compose the internal model
architecture, set training parameters, or run hyperparameter optimization.

Ludwig will build an end-to-end machine learning pipeline automatically, using
whatever is explicitly specified in the configuration, while falling back to
smart defaults for any parameters that are not.
# Declarative Machine Learning
Ludwig’s declarative approach to machine learning empowers you to have full
control of the components of the machine learning pipeline that you care about,
while leaving it up to Ludwig to make reasonable decisions for the rest.

Analysts, scientists, engineers, and researchers use Ludwig to explore
state-of-the-art model architectures, run hyperparameter search, scale up to
larger than available memory datasets and multi-node clusters, and finally
serve the best model in production.
Finally, the use of abstract interfaces throughout the codebase makes it easy
for users to extend Ludwig by adding new models, metrics, losses, and
preprocessing functions that can be registered to make them immediately useable
in the same unified configuration system.
# Main Features
- **[Data-Driven configuration system](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/how_ludwig_works)**
A config YAML file that describes the schema of your data (input features,
output features, and their types) is all you need to start training deep
learning models. Ludwig uses declared features to compose a deep learning
model accordingly.
```yaml
input_features:
- name: data_column_1
type: number
- name: data_column_2
type: category
- name: data_column_3
type: text
- name: data_column_4
type: image
...
output_features:
- name: data_column_5
type: number
- name: data_column_6
type: category
...
```
- **[Training, prediction, and evaluation from the command line](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/command_line_interface)**
Simple commands can be used to train models and predict new data.
```shell
ludwig train --config config.yaml --dataset data.csv
ludwig predict --model_path results/experiment_run/model --dataset test.csv
ludwig eval --model_path results/experiment_run/model --dataset test.csv
```
- **[Programmatic API](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/api/LudwigModel)**
Ludwig also provides a simple programmatic API for all of the functionality
described above and more.
```python
from ludwig.api import LudwigModel
# train a model
config = {
"input_features": [...],
"output_features": [...],
}
model = LudwigModel(config)
data = pd.read_csv("data.csv")
train_stats, _, model_dir = model.train(data)
# or load a model
model = LudwigModel.load(model_dir)
# obtain predictions
predictions = model.predict(data)
```
- **[Distributed training](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/distributed_training)**
Train models in a distributed setting using [Horovod](https://github.com/horovod/horovod),
which allows training on a single machine with multiple GPUs or multiple
machines with multiple GPUs.
- **[Serving](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/serving)**
Serve models using FastAPI.
```shell
ludwig serve --model_path ./results/experiment_run/model
curl http://0.0.0.0:8000/predict -X POST -F "movie_title=Friends With Money" -F "content_rating=R" -F "genres=Art House & International, Comedy, Drama" -F "runtime=88.0" -F "top_critic=TRUE" -F "review_content=The cast is terrific, the movie isn't."
```
- **[Hyperparameter optimization](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/hyperopt)**
Run hyperparameter optimization locally or using [Ray Tune](https://docs.ray.io/en/latest/tune/index.html).
```shell
ludwig hyperopt --config config.yaml --dataset data.csv
```
- **[AutoML](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/automl)**
Ludwig AutoML takes a dataset, the target column, and a time budget, and
returns a trained Ludwig model.
- **[Third-Party integrations](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/integrations)**
Ludwig provides an extendable interface to integrate with third-party
systems for tracking experiments. Third-party integrations exist for Comet
ML, Weights & Biases, WhyLabs, and MLFlow.
- **[Extensibility](https://ludwig-ai.github.io/ludwig-docs/latest/developer_guide)**
Ludwig is built from the ground up with extensibility in mind. It is easy to
add new data types by implementing clear, well-documented abstract classes
that define functions to preprocess, encode, and decode data.
Furthermore, new `torch nn.Module` models can be easily added by them to a
registry. This encourages reuse and sharing new models with the community.
Refer to the [Developer Guide](https://ludwig-ai.github.io/ludwig-docs/latest/developer_guide)
for further details.
# Quick Start
For a full tutorial, check out the official [getting started guide](https://ludwig-ai.github.io/ludwig-docs/latest/getting_started/),
or take a look at end-to-end [Examples](https://ludwig-ai.github.io/ludwig-docs/latest/examples).
## Step 1: Install
Install from PyPi. Be aware that Ludwig requires Python 3.8+.
```shell
pip install ludwig
```
## Step 2: Define a configuration
Create a config that describes the schema of your data.
Assume we have a text classification task, with data containing a sentence and class column like the following.
| sentence | class |
| :----------------------------------: | :------: |
| Former president Barack Obama ... | politics |
| Juventus hired Cristiano Ronaldo ... | sport |
| LeBron James joins the Lakers ... | sport |
| ... | ... |
A configuration will look like this.
```yaml
input_features:
- name: sentence
type: text
output_features:
- name: class
type: category
```
Starting from a simple config like the one above, any and all aspects of the model architecture, training loop,
hyperparameter search, and backend infrastructure can be modified as additional fields in the declarative configuration
to customize the pipeline to meet your requirements.
```yaml
input_features:
- name: sentence
type: text
encoder: transformer
layers: 6
embedding_size: 512
output_features:
- name: class
type: category
loss: cross_entropy
trainer:
epochs: 50
batch_size: 64
optimizer:
type: adamw
beat1: 0.9
learning_rate: 0.001
backend:
type: ray
cache_format: parquet
processor:
type: dask
trainer:
use_gpu: true
num_workers: 4
resources_per_worker:
CPU: 4
GPU: 1
hyperopt:
metric: f1
sampler: random
parameters:
title.num_layers:
lower: 1
upper: 5
trainer.learning_rate:
values: [0.01, 0.003, 0.001]
```
For details on what can be configured, check out [Ludwig Configuration](https://ludwig-ai.github.io/ludwig-docs/latest/configuration/)
docs.
## Step 3: Train a model
Simple commands can be used to train models and predict new data.
```shell
ludwig train --config config.yaml --dataset data.csv
```
## Step 4: Predict and evaluate
The training process will produce a model that can be used for evaluating on and obtaining predictions for new data.
```shell
ludwig predict --model path/to/trained/model --dataset heldout.csv
ludwig evaluate --model path/to/trained/model --dataset heldout.csv
```
## Step 5: Visualize
Ludwig provides a suite of visualization tools allows you to analyze models' training and test performance and to
compare them.
```shell
ludwig visualize --visualization compare_performance --test_statistics path/to/test_statistics_model_1.json path/to/test_statistics_model_2.json
```
For the full set of visualization see the [Visualization Guide](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/visualizations).
## Step 6: Happy modeling
Try applying Ludwig to your data. [Reach out](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
if you have any questions.
# Advantages
- **Minimal machine learning boilerplate**
Ludwig takes care of the engineering complexity of machine learning out of
the box, enabling research scientists to focus on building models at the
highest level of abstraction. Data preprocessing, hyperparameter
optimization, device management, and distributed training for
`torch.nn.Module` models come completely free.
- **Easily build your benchmarks**
Creating a state-of-the-art baseline and comparing it with a new model is a
simple config change.
- **Easily apply new architectures to multiple problems and datasets**
Apply new models across the extensive set of tasks and datasets that Ludwig
supports. Ludwig includes a
[full benchmarking toolkit](https://arxiv.org/abs/2111.04260) accessible to
any user, for running experiments with multiple models across multiple
datasets with just a simple configuration.
- **Highly configurable data preprocessing, modeling, and metrics**
Any and all aspects of the model architecture, training loop, hyperparameter
search, and backend infrastructure can be modified as additional fields in
the declarative configuration to customize the pipeline to meet your
requirements. For details on what can be configured, check out
[Ludwig Configuration](https://ludwig-ai.github.io/ludwig-docs/latest/configuration/)
docs.
- **Multi-modal, multi-task learning out-of-the-box**
Mix and match tabular data, text, images, and even audio into complex model
configurations without writing code.
- **Rich model exporting and tracking**
Automatically track all trials and metrics with tools like Tensorboard,
Comet ML, Weights & Biases, MLFlow, and Aim Stack.
- **Automatically scale training to multi-GPU, multi-node clusters**
Go from training on your local machine to the cloud without code changes.
- **Low-code interface for state-of-the-art models, including pre-trained Huggingface Transformers**
Ludwig also natively integrates with pre-trained models, such as the ones
available in [Huggingface Transformers](https://huggingface.co/docs/transformers/index).
Users can choose from a vast collection of state-of-the-art pre-trained
PyTorch models to use without needing to write any code at all. For example,
training a BERT-based sentiment analysis model with Ludwig is as simple as:
```shell
ludwig train --dataset sst5 --config_str “{input_features: [{name: sentence, type: text, encoder: bert}], output_features: [{name: label, type: category}]}”
```
- **Low-code interface for AutoML**
[Ludwig AutoML](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/automl/)
allows users to obtain trained models by providing just a dataset, the
target column, and a time budget.
```python
auto_train_results = ludwig.automl.auto_train(dataset=my_dataset_df, target=target_column_name, time_limit_s=7200)
```
- **Easy productionisation**
Ludwig makes it easy to serve deep learning models, including on GPUs.
Launch a REST API for your trained Ludwig model.
```shell
ludwig serve --model_path=/path/to/model
```
Ludwig supports exporting models to efficient Torschscript bundles.
```shell
ludwig export_torchscript -–model_path=/path/to/model
```
# Tutorials
- [Text Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/text_classification)
- [Tabular Data Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/adult_census_income)
- [Image Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/mnist)
- [Multimodal Classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multimodal_classification)
# Example Use Cases
- [Named Entity Recognition Tagging](https://ludwig-ai.github.io/ludwig-docs/latest/examples/ner_tagging)
- [Natural Language Understanding](https://ludwig-ai.github.io/ludwig-docs/latest/examples/nlu)
- [Machine Translation](https://ludwig-ai.github.io/ludwig-docs/latest/examples/machine_translation)
- [Chit-Chat Dialogue Modeling through seq2seq](https://ludwig-ai.github.io/ludwig-docs/latest/examples/seq2seq)
- [Sentiment Analysis](https://ludwig-ai.github.io/ludwig-docs/latest/examples/sentiment_analysis)
- [One-shot Learning with Siamese Networks](https://ludwig-ai.github.io/ludwig-docs/latest/examples/oneshot)
- [Visual Question Answering](https://ludwig-ai.github.io/ludwig-docs/latest/examples/visual_qa)
- [Spoken Digit Speech Recognition](https://ludwig-ai.github.io/ludwig-docs/latest/examples/speech_recognition)
- [Speaker Verification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/speaker_verification)
- [Binary Classification (Titanic)](https://ludwig-ai.github.io/ludwig-docs/latest/examples/titanic)
- [Timeseries forecasting](https://ludwig-ai.github.io/ludwig-docs/latest/examples/forecasting)
- [Timeseries forecasting (Weather)](https://ludwig-ai.github.io/ludwig-docs/latest/examples/weather)
- [Movie rating prediction](https://ludwig-ai.github.io/ludwig-docs/latest/examples/movie_ratings)
- [Multi-label classification](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multi_label)
- [Multi-Task Learning](https://ludwig-ai.github.io/ludwig-docs/latest/examples/multi_task)
- [Simple Regression: Fuel Efficiency Prediction](https://ludwig-ai.github.io/ludwig-docs/latest/examples/fuel_efficiency)
- [Fraud Detection](https://ludwig-ai.github.io/ludwig-docs/latest/examples/fraud)
# More Information
Read our publications on [Ludwig](https://arxiv.org/pdf/1909.07930.pdf), [declarative ML](https://arxiv.org/pdf/2107.08148.pdf), and [Ludwig’s SoTA benchmarks](https://openreview.net/pdf?id=hwjnu6qW7E4).
Learn more about [how Ludwig works](https://ludwig-ai.github.io/ludwig-docs/latest/user_guide/how_ludwig_works/), [how to get started](https://ludwig-ai.github.io/ludwig-docs/latest/getting_started/), and work through more [examples](https://ludwig-ai.github.io/ludwig-docs/latest/examples).
If you are interested in contributing, have questions, comments, or thoughts to share, or if you just want to be in the
know, please consider [joining the Ludwig Slack](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ) and follow us on [Twitter](https://twitter.com/ludwig_ai)!
# Join the community to build Ludwig with us
Ludwig is an actively managed open-source project that relies on contributions from folks just like
you. Consider joining the active group of Ludwig contributors to make Ludwig an even
more accessible and feature rich framework for everyone to use!
<a href="https://github.com/ludwig-ai/ludwig/graphs/contributors">
<img src="https://contrib.rocks/image?repo=ludwig-ai/ludwig" />
</a><br/>
# Getting Involved
- [Slack](https://join.slack.com/t/ludwig-ai/shared_invite/zt-mrxo87w6-DlX5~73T2B4v_g6jj0pJcQ)
- [Twitter](https://twitter.com/ludwig_ai)
- [Medium](https://medium.com/ludwig-ai)
- [GitHub Issues](https://github.com/ludwig-ai/ludwig/issues)
%prep
%autosetup -n ludwig-0.7.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-ludwig -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.7.4-1
- Package Spec generated
|