summaryrefslogtreecommitdiff
path: root/python-lunas.spec
blob: 56f7270c6f490dd8c35770c91fa76b0de8ab9878 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
%global _empty_manifest_terminate_build 0
Name:		python-Lunas
Version:	0.5.1
Release:	1
Summary:	Building customisable data processing pipeline and data iterators for machine learning.
License:	LICENSE
URL:		https://github.com/pluiez/lunas
Source0:	https://mirrors.aliyun.com/pypi/web/packages/78/a5/4e4e93c0a8814fb3b0e83f420b3ff33c81599b55b2bc971edfe2cb8fe387/Lunas-0.5.1.tar.gz
BuildArch:	noarch

Requires:	python3-numpy
Requires:	python3-torch

%description
# Lunas

[![PyPI version](https://img.shields.io/badge/pypi-v0.5.1-limegreen.svg)](https://github.com/pluiez/lunas)

**Lunas** is a Python based library that mimics TensorFlow's `dataset` API and also its logics to build a data
processing pipeline for arbitrary datasets.

The implementation mostly draws on TensorFlow but in a simplified and pure-Python fashion.

## License

This project uses [MIT](LICENSE) license.

## Features

A `Dataset` represents a dataset and optionally holds custom operations on dataset elements.

The evaluation of operations are performed lazily, hence it's a trade-off for memory against speed.

### Datasets

Currently the following datasets are supported:

1. `TextLine`: iterates through a text file in read mode line by line.
2. `Stdin`: wraps the standard input as a dataset.
3. `Array`: wraps an iterable object as a dataset.
4. `Range`: wraps a range of integers as a dataset, simulating builtin `range`.
5. `Enumerate`: wraps a dataset with index for each element, simulating builtin `enumerate`.
6. `Zip`: wraps multiple datasets as one dataset and supports custom padding for varying-sized datasets.
7. `Concat`: concatenates multiple datasets as one dataset.
8. `Group`: group several samples together.
9. `Flatten`: flattens a sample into multiple samples.
10. `Glob`: wraps the standard `glob.glob` as a dataset.
11. `Map`: transforms elements by a given mapping function.
12. `Where`: filters elements by a given predicate function.
13. `Repeat`: repeats the dataset for multiple epochs.
14. `Interleave`: maps a dataset into multiple datasets and interleave between the datasets.
15. `Shuffle`: shuffles a dataset using a buffer for memory-efficient randomisation.
16. `Sort`: sorts the dataset.
17. `Slice`: slices the dataset.
18. `Shard`: shards the dataset into different partitions.
19. `Sampling`: draws samples from several datasets given a sampling distribution.

Additionally, chaining-style dataset operation is available for following datasets:
`Map`, `Where`, `Repeat`, `Shard`, `Shuffle`, `Sort`, `Slice`, `Enumerate`, `Group`, `Flatten` and `Concat`.

For example, a dataset can invoke the following to create a new dataset:

```python
ds = lunas.Range(100)
.map(lambda x: 2 * x)
.where(lambda x: x < 50)
.shuffle(buffer_size=100)

print(list(ds))
```

### Batch Iterators

The batch iterators are provided to generate batches from a given dataset, currently including:

1. `ConstantIterator`: generates batches with a constant number of samples.
2. `BucketIterator`: generates varying-sized batches with sample size determined by a custom function.
3. `DataLoader`: wraps PyTorch's `torch.utils.data.DataLoader` to provide multiprocessing data-loading features.

### Persistence

Both datasets and batch iterators support persistence using `state()` and `load()` interface.
`state()` takes a checkpoint of current iteration state, while `load()` restores iteration state from a given
checkpoint.

## Requirements

- Python >= 3.7
- numpy
- pytorch >= 1.5.0

## Installation

Install using pip:

```shell
pip install -U lunas
```

## Basics

1. Create a dataset and iterate through it:

   ```python
   from lunas import Range

   ds = Range(1000).shuffle(buffer_size=100)
   for x in ds: # epoch 1
       print(x)
   for x in ds: # epoch 2
       print(x)

   ds = Range(1000).shuffle(buffer_size=100).repeat(2)
   for x in ds: # 2 epochs
       print(x)
   ```

    - A dataset can be scanned through for several epochs.
    - Dataset.shuffle() performs a buffered shuffling. The shuffling does not happen immediately at dataset creation,
      but rather begins when trying to access an element from the dataset.
    - Alternatively, `Dataset.repeat(2)` creates another dataset that iterates through the original dataset twice.

2. Build a data processing pipeline:

   ```python
   from lunas import *
   ds = Range(10).map(lambda x: x * 2).where(lambda x: x % 2 == 0)
   ```

    - The chaining calls of a `Dataset` object defines a processing pipeline on the original dataset.

3. Deal with multiple data sources:

   ```python
   from lunas import *

   ds1 = Range(10)
   ds2 = Range(start=10, stop=20, step=1)
   ds = Zip([ds1, ds2]).map(lambda x, y: (x + y), unpack_args=True)

   ds3 = Range(10)
   ds4 = Range(100)
   ds5 = Range(1000)
   ds = Zip([ds3, ds4, ds5], mode='>', padding=True).map(lambda x, y, z: (x + y + z), unpack_args=True)
   ```

    - Two datasets here are zipped as a `Zip` dataset. A `Zip` dataset returns a tuple from the internal child-datasets,
      that is `ds1` and `ds2`.

    - `Zip` requires strictly the datasets to be aligned by default. It also allows zipping multiple datasets of
      different sizes by providing additional `mode` and `paddinng` argument to indicate either padding smaller dataset
      or truncating bigger dataset.

4. Example usage in a more complicated distributed multilingual Language Modeling training case:

   ```python
   from lunas import *


   corpus_paths = ['train.zh', 'train.en', 'train.ru']
   sampling_weights = [0.3, 0.4, 0.3]

   # Shards a dataset so that each worker holds a unique shard of the original corpus.
   # Sharding should be done before shuffling to avoid unnecessary shuffling efforts in each worker.
   datasets = []
   for corpus in corpus_paths:
       ds = TextLine(corpus) \
           .shard(dist_word_size, dist_local_rank) \
           .shuffle(buffer_size=10000)
       # Tokenizes plain text into token ids
       ds = ds.map(lambda x: {'input': tokenizer.tokenize(x)})
       # Group consecutive 128 samples together, then concat and split the samples in that group into the same length
       # to reduce padding. Finally, flatten the samples group into separate samples.
       ds = ds.group(group_size=128) \
           .map(lambda xs: concat_and_split(xs, target_length=1024)) \
           .flatten()

       datasets.append(ds)
   # Defines a sampling strategy from the datasets
   ds = Sampling(datasets, sampling_weights, virtual_size=1000000)

   batch_itr = BucketIterator(
       ds,
       # each batch size has at most 4096 tokens
       batch_size=4096,
       # size for each sample is measured in number of tokens in target language
       get_length_fn=lambda x: len(x),
       bucket_boundaries=get_bucket_boundaries()
   )

   dataloader = DataLoader(
       batch_itr,
       num_workers=6,
       collate_fn=collate_fn,
   )

   for epoch in range(max_epoch):
       for bathc in dataloader:
           ...
   ```

5. Resume iteration:

   ```python
   import pickle
   # Stops at the 10-th element
   for i, x in enumerate(it):
       if i == 10:
           break
   pickle.dump(it.state(), open('state.pkl', 'wb'))
   # ...
   state = pickle.load(open('state.pkl', 'rb'))
   it.load(state)
   # Starts from the 11-th element
   for i, x in enumerate(it):
       ...
   ```

    - `it` here can be a dataset or batch iterator object.
    - `state()` returns a picklable dictionary, which can be loaded by `it.load()` to resume the iteration.
    - lunas provides limited support for resumable iteration. Specifically, the iteration state is maintained by a
      counting pointer in `Dataset`. For those dataset implementations that manage iteration by internal buffering, such
      as `Shuffle`, `Sort` and `BucketIterator`, `load()` would loss content in the buffer.

6. Extend the dataset:

    - You can refer to the implementation of `TextLine` to customize your own data dataset.

## Known issues

1. Parallel processing is not yet supported due to Python's limited support for parallelization.

   Multi-threading can be helpful for resource-intensive data loading operations, but not for CPU-intensive data
   processing operations. Whereas multi-processing is facilitates CPU-intensive scenarios, there are a few limitations,
   which further introduce complexity in the use of the library.

   Although it won't cause any difference for lunas APIs, the users will have to pay more attention in order to ensure
   multi-processing work correctly. For example, multi-processing does not accept lambda expressions and any unpicklable
   objects as arguments. The more severe problem is that once the child-process terminated with certain fatal errors (
   for example, a segment fault), the parent process will never be notified the termination of the child. It thus
   requires extra efforts on accounting the states of child processes and the standard `multiprocessing` library does
   not come to use.

   We are likely to opt to C++ based implementation for parallelization features just as TensorFlow did.

2. Stdin dataset cannot be used in potential multiprocessing context.

   multiprocessing can mess up standard input since we can't distribute /dev/stdin to multiple processes with trivial
   implementation. Furthermore, there seems to be little preferential needs to spread stdin to multiple processes, so
   the problem is simply left aside.




%package -n python3-Lunas
Summary:	Building customisable data processing pipeline and data iterators for machine learning.
Provides:	python-Lunas
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-Lunas
# Lunas

[![PyPI version](https://img.shields.io/badge/pypi-v0.5.1-limegreen.svg)](https://github.com/pluiez/lunas)

**Lunas** is a Python based library that mimics TensorFlow's `dataset` API and also its logics to build a data
processing pipeline for arbitrary datasets.

The implementation mostly draws on TensorFlow but in a simplified and pure-Python fashion.

## License

This project uses [MIT](LICENSE) license.

## Features

A `Dataset` represents a dataset and optionally holds custom operations on dataset elements.

The evaluation of operations are performed lazily, hence it's a trade-off for memory against speed.

### Datasets

Currently the following datasets are supported:

1. `TextLine`: iterates through a text file in read mode line by line.
2. `Stdin`: wraps the standard input as a dataset.
3. `Array`: wraps an iterable object as a dataset.
4. `Range`: wraps a range of integers as a dataset, simulating builtin `range`.
5. `Enumerate`: wraps a dataset with index for each element, simulating builtin `enumerate`.
6. `Zip`: wraps multiple datasets as one dataset and supports custom padding for varying-sized datasets.
7. `Concat`: concatenates multiple datasets as one dataset.
8. `Group`: group several samples together.
9. `Flatten`: flattens a sample into multiple samples.
10. `Glob`: wraps the standard `glob.glob` as a dataset.
11. `Map`: transforms elements by a given mapping function.
12. `Where`: filters elements by a given predicate function.
13. `Repeat`: repeats the dataset for multiple epochs.
14. `Interleave`: maps a dataset into multiple datasets and interleave between the datasets.
15. `Shuffle`: shuffles a dataset using a buffer for memory-efficient randomisation.
16. `Sort`: sorts the dataset.
17. `Slice`: slices the dataset.
18. `Shard`: shards the dataset into different partitions.
19. `Sampling`: draws samples from several datasets given a sampling distribution.

Additionally, chaining-style dataset operation is available for following datasets:
`Map`, `Where`, `Repeat`, `Shard`, `Shuffle`, `Sort`, `Slice`, `Enumerate`, `Group`, `Flatten` and `Concat`.

For example, a dataset can invoke the following to create a new dataset:

```python
ds = lunas.Range(100)
.map(lambda x: 2 * x)
.where(lambda x: x < 50)
.shuffle(buffer_size=100)

print(list(ds))
```

### Batch Iterators

The batch iterators are provided to generate batches from a given dataset, currently including:

1. `ConstantIterator`: generates batches with a constant number of samples.
2. `BucketIterator`: generates varying-sized batches with sample size determined by a custom function.
3. `DataLoader`: wraps PyTorch's `torch.utils.data.DataLoader` to provide multiprocessing data-loading features.

### Persistence

Both datasets and batch iterators support persistence using `state()` and `load()` interface.
`state()` takes a checkpoint of current iteration state, while `load()` restores iteration state from a given
checkpoint.

## Requirements

- Python >= 3.7
- numpy
- pytorch >= 1.5.0

## Installation

Install using pip:

```shell
pip install -U lunas
```

## Basics

1. Create a dataset and iterate through it:

   ```python
   from lunas import Range

   ds = Range(1000).shuffle(buffer_size=100)
   for x in ds: # epoch 1
       print(x)
   for x in ds: # epoch 2
       print(x)

   ds = Range(1000).shuffle(buffer_size=100).repeat(2)
   for x in ds: # 2 epochs
       print(x)
   ```

    - A dataset can be scanned through for several epochs.
    - Dataset.shuffle() performs a buffered shuffling. The shuffling does not happen immediately at dataset creation,
      but rather begins when trying to access an element from the dataset.
    - Alternatively, `Dataset.repeat(2)` creates another dataset that iterates through the original dataset twice.

2. Build a data processing pipeline:

   ```python
   from lunas import *
   ds = Range(10).map(lambda x: x * 2).where(lambda x: x % 2 == 0)
   ```

    - The chaining calls of a `Dataset` object defines a processing pipeline on the original dataset.

3. Deal with multiple data sources:

   ```python
   from lunas import *

   ds1 = Range(10)
   ds2 = Range(start=10, stop=20, step=1)
   ds = Zip([ds1, ds2]).map(lambda x, y: (x + y), unpack_args=True)

   ds3 = Range(10)
   ds4 = Range(100)
   ds5 = Range(1000)
   ds = Zip([ds3, ds4, ds5], mode='>', padding=True).map(lambda x, y, z: (x + y + z), unpack_args=True)
   ```

    - Two datasets here are zipped as a `Zip` dataset. A `Zip` dataset returns a tuple from the internal child-datasets,
      that is `ds1` and `ds2`.

    - `Zip` requires strictly the datasets to be aligned by default. It also allows zipping multiple datasets of
      different sizes by providing additional `mode` and `paddinng` argument to indicate either padding smaller dataset
      or truncating bigger dataset.

4. Example usage in a more complicated distributed multilingual Language Modeling training case:

   ```python
   from lunas import *


   corpus_paths = ['train.zh', 'train.en', 'train.ru']
   sampling_weights = [0.3, 0.4, 0.3]

   # Shards a dataset so that each worker holds a unique shard of the original corpus.
   # Sharding should be done before shuffling to avoid unnecessary shuffling efforts in each worker.
   datasets = []
   for corpus in corpus_paths:
       ds = TextLine(corpus) \
           .shard(dist_word_size, dist_local_rank) \
           .shuffle(buffer_size=10000)
       # Tokenizes plain text into token ids
       ds = ds.map(lambda x: {'input': tokenizer.tokenize(x)})
       # Group consecutive 128 samples together, then concat and split the samples in that group into the same length
       # to reduce padding. Finally, flatten the samples group into separate samples.
       ds = ds.group(group_size=128) \
           .map(lambda xs: concat_and_split(xs, target_length=1024)) \
           .flatten()

       datasets.append(ds)
   # Defines a sampling strategy from the datasets
   ds = Sampling(datasets, sampling_weights, virtual_size=1000000)

   batch_itr = BucketIterator(
       ds,
       # each batch size has at most 4096 tokens
       batch_size=4096,
       # size for each sample is measured in number of tokens in target language
       get_length_fn=lambda x: len(x),
       bucket_boundaries=get_bucket_boundaries()
   )

   dataloader = DataLoader(
       batch_itr,
       num_workers=6,
       collate_fn=collate_fn,
   )

   for epoch in range(max_epoch):
       for bathc in dataloader:
           ...
   ```

5. Resume iteration:

   ```python
   import pickle
   # Stops at the 10-th element
   for i, x in enumerate(it):
       if i == 10:
           break
   pickle.dump(it.state(), open('state.pkl', 'wb'))
   # ...
   state = pickle.load(open('state.pkl', 'rb'))
   it.load(state)
   # Starts from the 11-th element
   for i, x in enumerate(it):
       ...
   ```

    - `it` here can be a dataset or batch iterator object.
    - `state()` returns a picklable dictionary, which can be loaded by `it.load()` to resume the iteration.
    - lunas provides limited support for resumable iteration. Specifically, the iteration state is maintained by a
      counting pointer in `Dataset`. For those dataset implementations that manage iteration by internal buffering, such
      as `Shuffle`, `Sort` and `BucketIterator`, `load()` would loss content in the buffer.

6. Extend the dataset:

    - You can refer to the implementation of `TextLine` to customize your own data dataset.

## Known issues

1. Parallel processing is not yet supported due to Python's limited support for parallelization.

   Multi-threading can be helpful for resource-intensive data loading operations, but not for CPU-intensive data
   processing operations. Whereas multi-processing is facilitates CPU-intensive scenarios, there are a few limitations,
   which further introduce complexity in the use of the library.

   Although it won't cause any difference for lunas APIs, the users will have to pay more attention in order to ensure
   multi-processing work correctly. For example, multi-processing does not accept lambda expressions and any unpicklable
   objects as arguments. The more severe problem is that once the child-process terminated with certain fatal errors (
   for example, a segment fault), the parent process will never be notified the termination of the child. It thus
   requires extra efforts on accounting the states of child processes and the standard `multiprocessing` library does
   not come to use.

   We are likely to opt to C++ based implementation for parallelization features just as TensorFlow did.

2. Stdin dataset cannot be used in potential multiprocessing context.

   multiprocessing can mess up standard input since we can't distribute /dev/stdin to multiple processes with trivial
   implementation. Furthermore, there seems to be little preferential needs to spread stdin to multiple processes, so
   the problem is simply left aside.




%package help
Summary:	Development documents and examples for Lunas
Provides:	python3-Lunas-doc
%description help
# Lunas

[![PyPI version](https://img.shields.io/badge/pypi-v0.5.1-limegreen.svg)](https://github.com/pluiez/lunas)

**Lunas** is a Python based library that mimics TensorFlow's `dataset` API and also its logics to build a data
processing pipeline for arbitrary datasets.

The implementation mostly draws on TensorFlow but in a simplified and pure-Python fashion.

## License

This project uses [MIT](LICENSE) license.

## Features

A `Dataset` represents a dataset and optionally holds custom operations on dataset elements.

The evaluation of operations are performed lazily, hence it's a trade-off for memory against speed.

### Datasets

Currently the following datasets are supported:

1. `TextLine`: iterates through a text file in read mode line by line.
2. `Stdin`: wraps the standard input as a dataset.
3. `Array`: wraps an iterable object as a dataset.
4. `Range`: wraps a range of integers as a dataset, simulating builtin `range`.
5. `Enumerate`: wraps a dataset with index for each element, simulating builtin `enumerate`.
6. `Zip`: wraps multiple datasets as one dataset and supports custom padding for varying-sized datasets.
7. `Concat`: concatenates multiple datasets as one dataset.
8. `Group`: group several samples together.
9. `Flatten`: flattens a sample into multiple samples.
10. `Glob`: wraps the standard `glob.glob` as a dataset.
11. `Map`: transforms elements by a given mapping function.
12. `Where`: filters elements by a given predicate function.
13. `Repeat`: repeats the dataset for multiple epochs.
14. `Interleave`: maps a dataset into multiple datasets and interleave between the datasets.
15. `Shuffle`: shuffles a dataset using a buffer for memory-efficient randomisation.
16. `Sort`: sorts the dataset.
17. `Slice`: slices the dataset.
18. `Shard`: shards the dataset into different partitions.
19. `Sampling`: draws samples from several datasets given a sampling distribution.

Additionally, chaining-style dataset operation is available for following datasets:
`Map`, `Where`, `Repeat`, `Shard`, `Shuffle`, `Sort`, `Slice`, `Enumerate`, `Group`, `Flatten` and `Concat`.

For example, a dataset can invoke the following to create a new dataset:

```python
ds = lunas.Range(100)
.map(lambda x: 2 * x)
.where(lambda x: x < 50)
.shuffle(buffer_size=100)

print(list(ds))
```

### Batch Iterators

The batch iterators are provided to generate batches from a given dataset, currently including:

1. `ConstantIterator`: generates batches with a constant number of samples.
2. `BucketIterator`: generates varying-sized batches with sample size determined by a custom function.
3. `DataLoader`: wraps PyTorch's `torch.utils.data.DataLoader` to provide multiprocessing data-loading features.

### Persistence

Both datasets and batch iterators support persistence using `state()` and `load()` interface.
`state()` takes a checkpoint of current iteration state, while `load()` restores iteration state from a given
checkpoint.

## Requirements

- Python >= 3.7
- numpy
- pytorch >= 1.5.0

## Installation

Install using pip:

```shell
pip install -U lunas
```

## Basics

1. Create a dataset and iterate through it:

   ```python
   from lunas import Range

   ds = Range(1000).shuffle(buffer_size=100)
   for x in ds: # epoch 1
       print(x)
   for x in ds: # epoch 2
       print(x)

   ds = Range(1000).shuffle(buffer_size=100).repeat(2)
   for x in ds: # 2 epochs
       print(x)
   ```

    - A dataset can be scanned through for several epochs.
    - Dataset.shuffle() performs a buffered shuffling. The shuffling does not happen immediately at dataset creation,
      but rather begins when trying to access an element from the dataset.
    - Alternatively, `Dataset.repeat(2)` creates another dataset that iterates through the original dataset twice.

2. Build a data processing pipeline:

   ```python
   from lunas import *
   ds = Range(10).map(lambda x: x * 2).where(lambda x: x % 2 == 0)
   ```

    - The chaining calls of a `Dataset` object defines a processing pipeline on the original dataset.

3. Deal with multiple data sources:

   ```python
   from lunas import *

   ds1 = Range(10)
   ds2 = Range(start=10, stop=20, step=1)
   ds = Zip([ds1, ds2]).map(lambda x, y: (x + y), unpack_args=True)

   ds3 = Range(10)
   ds4 = Range(100)
   ds5 = Range(1000)
   ds = Zip([ds3, ds4, ds5], mode='>', padding=True).map(lambda x, y, z: (x + y + z), unpack_args=True)
   ```

    - Two datasets here are zipped as a `Zip` dataset. A `Zip` dataset returns a tuple from the internal child-datasets,
      that is `ds1` and `ds2`.

    - `Zip` requires strictly the datasets to be aligned by default. It also allows zipping multiple datasets of
      different sizes by providing additional `mode` and `paddinng` argument to indicate either padding smaller dataset
      or truncating bigger dataset.

4. Example usage in a more complicated distributed multilingual Language Modeling training case:

   ```python
   from lunas import *


   corpus_paths = ['train.zh', 'train.en', 'train.ru']
   sampling_weights = [0.3, 0.4, 0.3]

   # Shards a dataset so that each worker holds a unique shard of the original corpus.
   # Sharding should be done before shuffling to avoid unnecessary shuffling efforts in each worker.
   datasets = []
   for corpus in corpus_paths:
       ds = TextLine(corpus) \
           .shard(dist_word_size, dist_local_rank) \
           .shuffle(buffer_size=10000)
       # Tokenizes plain text into token ids
       ds = ds.map(lambda x: {'input': tokenizer.tokenize(x)})
       # Group consecutive 128 samples together, then concat and split the samples in that group into the same length
       # to reduce padding. Finally, flatten the samples group into separate samples.
       ds = ds.group(group_size=128) \
           .map(lambda xs: concat_and_split(xs, target_length=1024)) \
           .flatten()

       datasets.append(ds)
   # Defines a sampling strategy from the datasets
   ds = Sampling(datasets, sampling_weights, virtual_size=1000000)

   batch_itr = BucketIterator(
       ds,
       # each batch size has at most 4096 tokens
       batch_size=4096,
       # size for each sample is measured in number of tokens in target language
       get_length_fn=lambda x: len(x),
       bucket_boundaries=get_bucket_boundaries()
   )

   dataloader = DataLoader(
       batch_itr,
       num_workers=6,
       collate_fn=collate_fn,
   )

   for epoch in range(max_epoch):
       for bathc in dataloader:
           ...
   ```

5. Resume iteration:

   ```python
   import pickle
   # Stops at the 10-th element
   for i, x in enumerate(it):
       if i == 10:
           break
   pickle.dump(it.state(), open('state.pkl', 'wb'))
   # ...
   state = pickle.load(open('state.pkl', 'rb'))
   it.load(state)
   # Starts from the 11-th element
   for i, x in enumerate(it):
       ...
   ```

    - `it` here can be a dataset or batch iterator object.
    - `state()` returns a picklable dictionary, which can be loaded by `it.load()` to resume the iteration.
    - lunas provides limited support for resumable iteration. Specifically, the iteration state is maintained by a
      counting pointer in `Dataset`. For those dataset implementations that manage iteration by internal buffering, such
      as `Shuffle`, `Sort` and `BucketIterator`, `load()` would loss content in the buffer.

6. Extend the dataset:

    - You can refer to the implementation of `TextLine` to customize your own data dataset.

## Known issues

1. Parallel processing is not yet supported due to Python's limited support for parallelization.

   Multi-threading can be helpful for resource-intensive data loading operations, but not for CPU-intensive data
   processing operations. Whereas multi-processing is facilitates CPU-intensive scenarios, there are a few limitations,
   which further introduce complexity in the use of the library.

   Although it won't cause any difference for lunas APIs, the users will have to pay more attention in order to ensure
   multi-processing work correctly. For example, multi-processing does not accept lambda expressions and any unpicklable
   objects as arguments. The more severe problem is that once the child-process terminated with certain fatal errors (
   for example, a segment fault), the parent process will never be notified the termination of the child. It thus
   requires extra efforts on accounting the states of child processes and the standard `multiprocessing` library does
   not come to use.

   We are likely to opt to C++ based implementation for parallelization features just as TensorFlow did.

2. Stdin dataset cannot be used in potential multiprocessing context.

   multiprocessing can mess up standard input since we can't distribute /dev/stdin to multiple processes with trivial
   implementation. Furthermore, there seems to be little preferential needs to spread stdin to multiple processes, so
   the problem is simply left aside.




%prep
%autosetup -n Lunas-0.5.1

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-Lunas -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 0.5.1-1
- Package Spec generated