1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
|
%global _empty_manifest_terminate_build 0
Name: python-madminer
Version: 0.9.6
Release: 1
Summary: Mining gold from MadGraph to improve limit setting in particle physics.
License: MIT
URL: https://github.com/madminer-tool/madminer
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/2d/88/a1d87a6642f13ef182eb49e40beb4d69c2f860a9b658ad30bde40b516d86/madminer-0.9.6.tar.gz
BuildArch: noarch
Requires: python3-h5py
Requires: python3-matplotlib
Requires: python3-numpy
Requires: python3-particle
Requires: python3-scipy
Requires: python3-torch
Requires: python3-uproot3
Requires: python3-vector
Requires: python3-sympy
Requires: python3-myst-parser
Requires: python3-numpydoc
Requires: python3-sphinx
Requires: python3-sphinx-rtd-theme
Requires: python3-bqplot
Requires: python3-pandas
Requires: python3-black[jupyter]
Requires: python3-isort
Requires: python3-pytest
%description
# MadMiner: ML based inference for particle physics
**By Johann Brehmer, Felix Kling, Irina Espejo, Sinclert Pérez, and Kyle Cranmer**
[![PyPI version][pypi-version-badge]][pypi-version-link]
[![CI/CD Status][ci-status-badge]][ci-status-link]
[![Docs Status][docs-status-badge]][docs-status-link]
[![Gitter chat][chat-gitter-badge]][chat-gitter-link]
[![Code style][code-style-badge]][code-style-link]
[![MIT license][mit-license-badge]][mit-license-link]
[![DOI reference][ref-zenodo-badge]][ref-zenodo-link]
[![ArXiv reference][ref-arxiv-badge]][ref-arxiv-link]
## Introduction
![Schematics of the simulation and inference workflow][image-rascal-diagram]
Particle physics processes are usually modeled with complex Monte-Carlo simulations of the hard process, parton shower,
and detector interactions. These simulators typically do not admit a tractable likelihood function: given a (potentially
high-dimensional) set of observables, it is usually not possible to calculate the probability of these observables
for some model parameters. Particle physicists usually tackle this problem of "likelihood-free inference" by
hand-picking a few "good" observables or summary statistics and filling histograms of them. But this conventional
approach discards the information in all other observables and often does not scale well to high-dimensional problems.
In the three publications ["Constraining Effective Field Theories with Machine Learning"][ref-arxiv-madminer-1],
["A Guide to Constraining Effective Field Theories with Machine Learning"][ref-arxiv-madminer-2], and
["Mining gold from implicit models to improve likelihood-free inference"][ref-arxiv-madminer-3],
a new approach has been developed. In a nutshell, additional information is extracted from the simulations that is
closely related to the matrix elements that determine the hard process. This "augmented data" can be used to train
neural networks to efficiently approximate arbitrary likelihood ratios. We playfully call this process "mining gold"
from the simulator, since this information may be hard to get, but turns out to be very valuable for inference.
But the gold does not have to be hard to mine: MadMiner automates these modern multivariate inference strategies. It
wraps around the simulators MadGraph and Pythia, with different options for the detector simulation. It streamlines all
steps in the analysis chain from the simulation to the extraction of the augmented data, their processing, the training
and evaluation of the neural networks, and the statistical analysis are implemented.
## Resources
### Paper
Our main publication [MadMiner: Machine-learning-based inference for particle physics][ref-arxiv-link]
provides an overview over this package. We recommend reading it first before jumping into the code.
### Installation instructions
Please have a look at our [installation instructions][docs-installation-guide].
### Tutorials
In the [examples][examples-folder-path] folder in this repository, we provide two tutorials. The first is called
[_Toy simulator_][examples-simulator-path], and it is based on a toy problem rather than a full particle-physics simulation.
It demonstrates inference with MadMiner without spending much time on the more technical steps of running the simulation.
The second, called [_Particle physics_][examples-physics-path], shows all steps of a particle-physics analysis with MadMiner.
These examples are the basis of [the online tutorial][jupyter-tutorial-link] built on Jupyter Books. It also walks
through how to run MadMiner using Docker so that you do not have to install Fortran, MadGraph, Pythia, Delphes, etc.
You can even run it with no install using Binder.
### Documentation
The madminer API is documented on [Read the Docs][docs-index].
### Support
If you have any questions, please chat to us in our [Gitter community][chat-gitter-link].
## Citations
If you use MadMiner, please cite our main publication,
```
@article{Brehmer:2019xox,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Cranmer, Kyle",
title = "{MadMiner: Machine learning-based inference for particle physics}",
journal = "Comput. Softw. Big Sci.",
volume = "4",
year = "2020",
number = "1",
pages = "3",
doi = "10.1007/s41781-020-0035-2",
eprint = "1907.10621",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1907.10621;%%"
}
```
The code itself can be cited as
```
@misc{MadMiner_code,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Perez, Sinclert and Cranmer, Kyle",
title = "{MadMiner}",
doi = "10.5281/zenodo.1489147",
url = {https://github.com/madminer-tool/madminer}
}
```
The main references for the implemented inference techniques are the following:
- CARL: [1506.02169][ref-arxiv-carl].
- MAF: [1705.07057][ref-arxiv-maf].
- CASCAL, RASCAL, ROLR, SALLY, SALLINO, SCANDAL:
- [1805.00013][ref-arxiv-madminer-1].
- [1805.00020][ref-arxiv-madminer-2].
- [1805.12244][ref-arxiv-madminer-3].
- ALICE, ALICES: [1808.00973][ref-arxiv-alice].
## Acknowledgements
We are immensely grateful to all [contributors][repo-madminer-contrib] and bug reporters! In particular, we would like
to thank Zubair Bhatti, Philipp Englert, Lukas Heinrich, Alexander Held, Samuel Homiller and Duccio Pappadopulo.
The SCANDAL inference method is based on [Masked Autoregressive Flows][ref-arxiv-scandal], where our implementation is
a PyTorch port of the original code by George Papamakarios, available at [this repository][repo-maf-main-page].
![IRIS-HEP logo][image-iris-logo]
We are grateful for the support of [IRIS-HEP][web-iris-hep] and [DIANA-HEP][web-diana-hep].
[chat-gitter-badge]: https://badges.gitter.im/madminer/community.svg
[chat-gitter-link]: https://gitter.im/madminer/community
[ci-status-badge]: https://github.com/madminer-tool/madminer/actions/workflows/ci.yml/badge.svg?branch=main
[ci-status-link]: https://github.com/madminer-tool/madminer/actions/workflows/ci.yml?query=branch%3Amain
[code-style-badge]: https://img.shields.io/badge/code%20style-black-000000.svg
[code-style-link]: https://github.com/psf/black
[docs-status-badge]: https://readthedocs.org/projects/madminer/badge/?version=latest
[docs-status-link]: https://madminer.readthedocs.io/en/latest/?badge=latest
[mit-license-badge]: https://img.shields.io/badge/License-MIT-blue.svg
[mit-license-link]: https://github.com/madminer-tool/madminer/blob/main/LICENSE.md
[pypi-version-badge]: https://badge.fury.io/py/madminer.svg
[pypi-version-link]: https://badge.fury.io/py/madminer
[ref-arxiv-badge]: http://img.shields.io/badge/arXiv-1907.10621-B31B1B.svg
[ref-arxiv-link]: https://arxiv.org/abs/1907.10621
[ref-zenodo-badge]: https://zenodo.org/badge/DOI/10.5281/zenodo.1489147.svg
[ref-zenodo-link]: https://doi.org/10.5281/zenodo.1489147
[docs-index]: https://madminer.readthedocs.io/en/latest/
[docs-installation-guide ]: https://madminer.readthedocs.io/en/latest/installation.html
[examples-folder-path]: https://github.com/madminer-tool/madminer/tree/main/examples
[examples-physics-path]: https://github.com/madminer-tool/madminer/tree/main/examples/tutorial_particle_physics
[examples-simulator-path]: https://github.com/madminer-tool/madminer/tree/main/examples/tutorial_toy_simulator
[image-iris-logo]: https://iris-hep.org/assets/logos/Iris-hep-4-no-long-name.png
[image-rascal-diagram]: https://raw.githubusercontent.com/madminer-tool/madminer/main/docs/img/rascal-explainer.png
[jupyter-tutorial-link]: https://madminer-tool.github.io/madminer-tutorial
[ref-arxiv-alice]: https://arxiv.org/abs/1808.00973
[ref-arxiv-carl]: https://arxiv.org/abs/1506.02169
[ref-arxiv-maf]: https://arxiv.org/abs/1705.07057
[ref-arxiv-madminer-1]: https://arxiv.org/abs/1805.00013
[ref-arxiv-madminer-2]: https://arxiv.org/abs/1805.00020
[ref-arxiv-madminer-3]: https://arxiv.org/abs/1805.12244
[ref-arxiv-scandal]: https://arxiv.org/abs/1705.07057
[repo-madminer-contrib]: https://github.com/madminer-tool/madminer/graphs/contributors
[repo-maf-main-page]: https://github.com/gpapamak/maf
[web-diana-hep]: https://diana-hep.org
[web-iris-hep]: https://iris-hep.org
%package -n python3-madminer
Summary: Mining gold from MadGraph to improve limit setting in particle physics.
Provides: python-madminer
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-madminer
# MadMiner: ML based inference for particle physics
**By Johann Brehmer, Felix Kling, Irina Espejo, Sinclert Pérez, and Kyle Cranmer**
[![PyPI version][pypi-version-badge]][pypi-version-link]
[![CI/CD Status][ci-status-badge]][ci-status-link]
[![Docs Status][docs-status-badge]][docs-status-link]
[![Gitter chat][chat-gitter-badge]][chat-gitter-link]
[![Code style][code-style-badge]][code-style-link]
[![MIT license][mit-license-badge]][mit-license-link]
[![DOI reference][ref-zenodo-badge]][ref-zenodo-link]
[![ArXiv reference][ref-arxiv-badge]][ref-arxiv-link]
## Introduction
![Schematics of the simulation and inference workflow][image-rascal-diagram]
Particle physics processes are usually modeled with complex Monte-Carlo simulations of the hard process, parton shower,
and detector interactions. These simulators typically do not admit a tractable likelihood function: given a (potentially
high-dimensional) set of observables, it is usually not possible to calculate the probability of these observables
for some model parameters. Particle physicists usually tackle this problem of "likelihood-free inference" by
hand-picking a few "good" observables or summary statistics and filling histograms of them. But this conventional
approach discards the information in all other observables and often does not scale well to high-dimensional problems.
In the three publications ["Constraining Effective Field Theories with Machine Learning"][ref-arxiv-madminer-1],
["A Guide to Constraining Effective Field Theories with Machine Learning"][ref-arxiv-madminer-2], and
["Mining gold from implicit models to improve likelihood-free inference"][ref-arxiv-madminer-3],
a new approach has been developed. In a nutshell, additional information is extracted from the simulations that is
closely related to the matrix elements that determine the hard process. This "augmented data" can be used to train
neural networks to efficiently approximate arbitrary likelihood ratios. We playfully call this process "mining gold"
from the simulator, since this information may be hard to get, but turns out to be very valuable for inference.
But the gold does not have to be hard to mine: MadMiner automates these modern multivariate inference strategies. It
wraps around the simulators MadGraph and Pythia, with different options for the detector simulation. It streamlines all
steps in the analysis chain from the simulation to the extraction of the augmented data, their processing, the training
and evaluation of the neural networks, and the statistical analysis are implemented.
## Resources
### Paper
Our main publication [MadMiner: Machine-learning-based inference for particle physics][ref-arxiv-link]
provides an overview over this package. We recommend reading it first before jumping into the code.
### Installation instructions
Please have a look at our [installation instructions][docs-installation-guide].
### Tutorials
In the [examples][examples-folder-path] folder in this repository, we provide two tutorials. The first is called
[_Toy simulator_][examples-simulator-path], and it is based on a toy problem rather than a full particle-physics simulation.
It demonstrates inference with MadMiner without spending much time on the more technical steps of running the simulation.
The second, called [_Particle physics_][examples-physics-path], shows all steps of a particle-physics analysis with MadMiner.
These examples are the basis of [the online tutorial][jupyter-tutorial-link] built on Jupyter Books. It also walks
through how to run MadMiner using Docker so that you do not have to install Fortran, MadGraph, Pythia, Delphes, etc.
You can even run it with no install using Binder.
### Documentation
The madminer API is documented on [Read the Docs][docs-index].
### Support
If you have any questions, please chat to us in our [Gitter community][chat-gitter-link].
## Citations
If you use MadMiner, please cite our main publication,
```
@article{Brehmer:2019xox,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Cranmer, Kyle",
title = "{MadMiner: Machine learning-based inference for particle physics}",
journal = "Comput. Softw. Big Sci.",
volume = "4",
year = "2020",
number = "1",
pages = "3",
doi = "10.1007/s41781-020-0035-2",
eprint = "1907.10621",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1907.10621;%%"
}
```
The code itself can be cited as
```
@misc{MadMiner_code,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Perez, Sinclert and Cranmer, Kyle",
title = "{MadMiner}",
doi = "10.5281/zenodo.1489147",
url = {https://github.com/madminer-tool/madminer}
}
```
The main references for the implemented inference techniques are the following:
- CARL: [1506.02169][ref-arxiv-carl].
- MAF: [1705.07057][ref-arxiv-maf].
- CASCAL, RASCAL, ROLR, SALLY, SALLINO, SCANDAL:
- [1805.00013][ref-arxiv-madminer-1].
- [1805.00020][ref-arxiv-madminer-2].
- [1805.12244][ref-arxiv-madminer-3].
- ALICE, ALICES: [1808.00973][ref-arxiv-alice].
## Acknowledgements
We are immensely grateful to all [contributors][repo-madminer-contrib] and bug reporters! In particular, we would like
to thank Zubair Bhatti, Philipp Englert, Lukas Heinrich, Alexander Held, Samuel Homiller and Duccio Pappadopulo.
The SCANDAL inference method is based on [Masked Autoregressive Flows][ref-arxiv-scandal], where our implementation is
a PyTorch port of the original code by George Papamakarios, available at [this repository][repo-maf-main-page].
![IRIS-HEP logo][image-iris-logo]
We are grateful for the support of [IRIS-HEP][web-iris-hep] and [DIANA-HEP][web-diana-hep].
[chat-gitter-badge]: https://badges.gitter.im/madminer/community.svg
[chat-gitter-link]: https://gitter.im/madminer/community
[ci-status-badge]: https://github.com/madminer-tool/madminer/actions/workflows/ci.yml/badge.svg?branch=main
[ci-status-link]: https://github.com/madminer-tool/madminer/actions/workflows/ci.yml?query=branch%3Amain
[code-style-badge]: https://img.shields.io/badge/code%20style-black-000000.svg
[code-style-link]: https://github.com/psf/black
[docs-status-badge]: https://readthedocs.org/projects/madminer/badge/?version=latest
[docs-status-link]: https://madminer.readthedocs.io/en/latest/?badge=latest
[mit-license-badge]: https://img.shields.io/badge/License-MIT-blue.svg
[mit-license-link]: https://github.com/madminer-tool/madminer/blob/main/LICENSE.md
[pypi-version-badge]: https://badge.fury.io/py/madminer.svg
[pypi-version-link]: https://badge.fury.io/py/madminer
[ref-arxiv-badge]: http://img.shields.io/badge/arXiv-1907.10621-B31B1B.svg
[ref-arxiv-link]: https://arxiv.org/abs/1907.10621
[ref-zenodo-badge]: https://zenodo.org/badge/DOI/10.5281/zenodo.1489147.svg
[ref-zenodo-link]: https://doi.org/10.5281/zenodo.1489147
[docs-index]: https://madminer.readthedocs.io/en/latest/
[docs-installation-guide ]: https://madminer.readthedocs.io/en/latest/installation.html
[examples-folder-path]: https://github.com/madminer-tool/madminer/tree/main/examples
[examples-physics-path]: https://github.com/madminer-tool/madminer/tree/main/examples/tutorial_particle_physics
[examples-simulator-path]: https://github.com/madminer-tool/madminer/tree/main/examples/tutorial_toy_simulator
[image-iris-logo]: https://iris-hep.org/assets/logos/Iris-hep-4-no-long-name.png
[image-rascal-diagram]: https://raw.githubusercontent.com/madminer-tool/madminer/main/docs/img/rascal-explainer.png
[jupyter-tutorial-link]: https://madminer-tool.github.io/madminer-tutorial
[ref-arxiv-alice]: https://arxiv.org/abs/1808.00973
[ref-arxiv-carl]: https://arxiv.org/abs/1506.02169
[ref-arxiv-maf]: https://arxiv.org/abs/1705.07057
[ref-arxiv-madminer-1]: https://arxiv.org/abs/1805.00013
[ref-arxiv-madminer-2]: https://arxiv.org/abs/1805.00020
[ref-arxiv-madminer-3]: https://arxiv.org/abs/1805.12244
[ref-arxiv-scandal]: https://arxiv.org/abs/1705.07057
[repo-madminer-contrib]: https://github.com/madminer-tool/madminer/graphs/contributors
[repo-maf-main-page]: https://github.com/gpapamak/maf
[web-diana-hep]: https://diana-hep.org
[web-iris-hep]: https://iris-hep.org
%package help
Summary: Development documents and examples for madminer
Provides: python3-madminer-doc
%description help
# MadMiner: ML based inference for particle physics
**By Johann Brehmer, Felix Kling, Irina Espejo, Sinclert Pérez, and Kyle Cranmer**
[![PyPI version][pypi-version-badge]][pypi-version-link]
[![CI/CD Status][ci-status-badge]][ci-status-link]
[![Docs Status][docs-status-badge]][docs-status-link]
[![Gitter chat][chat-gitter-badge]][chat-gitter-link]
[![Code style][code-style-badge]][code-style-link]
[![MIT license][mit-license-badge]][mit-license-link]
[![DOI reference][ref-zenodo-badge]][ref-zenodo-link]
[![ArXiv reference][ref-arxiv-badge]][ref-arxiv-link]
## Introduction
![Schematics of the simulation and inference workflow][image-rascal-diagram]
Particle physics processes are usually modeled with complex Monte-Carlo simulations of the hard process, parton shower,
and detector interactions. These simulators typically do not admit a tractable likelihood function: given a (potentially
high-dimensional) set of observables, it is usually not possible to calculate the probability of these observables
for some model parameters. Particle physicists usually tackle this problem of "likelihood-free inference" by
hand-picking a few "good" observables or summary statistics and filling histograms of them. But this conventional
approach discards the information in all other observables and often does not scale well to high-dimensional problems.
In the three publications ["Constraining Effective Field Theories with Machine Learning"][ref-arxiv-madminer-1],
["A Guide to Constraining Effective Field Theories with Machine Learning"][ref-arxiv-madminer-2], and
["Mining gold from implicit models to improve likelihood-free inference"][ref-arxiv-madminer-3],
a new approach has been developed. In a nutshell, additional information is extracted from the simulations that is
closely related to the matrix elements that determine the hard process. This "augmented data" can be used to train
neural networks to efficiently approximate arbitrary likelihood ratios. We playfully call this process "mining gold"
from the simulator, since this information may be hard to get, but turns out to be very valuable for inference.
But the gold does not have to be hard to mine: MadMiner automates these modern multivariate inference strategies. It
wraps around the simulators MadGraph and Pythia, with different options for the detector simulation. It streamlines all
steps in the analysis chain from the simulation to the extraction of the augmented data, their processing, the training
and evaluation of the neural networks, and the statistical analysis are implemented.
## Resources
### Paper
Our main publication [MadMiner: Machine-learning-based inference for particle physics][ref-arxiv-link]
provides an overview over this package. We recommend reading it first before jumping into the code.
### Installation instructions
Please have a look at our [installation instructions][docs-installation-guide].
### Tutorials
In the [examples][examples-folder-path] folder in this repository, we provide two tutorials. The first is called
[_Toy simulator_][examples-simulator-path], and it is based on a toy problem rather than a full particle-physics simulation.
It demonstrates inference with MadMiner without spending much time on the more technical steps of running the simulation.
The second, called [_Particle physics_][examples-physics-path], shows all steps of a particle-physics analysis with MadMiner.
These examples are the basis of [the online tutorial][jupyter-tutorial-link] built on Jupyter Books. It also walks
through how to run MadMiner using Docker so that you do not have to install Fortran, MadGraph, Pythia, Delphes, etc.
You can even run it with no install using Binder.
### Documentation
The madminer API is documented on [Read the Docs][docs-index].
### Support
If you have any questions, please chat to us in our [Gitter community][chat-gitter-link].
## Citations
If you use MadMiner, please cite our main publication,
```
@article{Brehmer:2019xox,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Cranmer, Kyle",
title = "{MadMiner: Machine learning-based inference for particle physics}",
journal = "Comput. Softw. Big Sci.",
volume = "4",
year = "2020",
number = "1",
pages = "3",
doi = "10.1007/s41781-020-0035-2",
eprint = "1907.10621",
archivePrefix = "arXiv",
primaryClass = "hep-ph",
SLACcitation = "%%CITATION = ARXIV:1907.10621;%%"
}
```
The code itself can be cited as
```
@misc{MadMiner_code,
author = "Brehmer, Johann and Kling, Felix and Espejo, Irina and Perez, Sinclert and Cranmer, Kyle",
title = "{MadMiner}",
doi = "10.5281/zenodo.1489147",
url = {https://github.com/madminer-tool/madminer}
}
```
The main references for the implemented inference techniques are the following:
- CARL: [1506.02169][ref-arxiv-carl].
- MAF: [1705.07057][ref-arxiv-maf].
- CASCAL, RASCAL, ROLR, SALLY, SALLINO, SCANDAL:
- [1805.00013][ref-arxiv-madminer-1].
- [1805.00020][ref-arxiv-madminer-2].
- [1805.12244][ref-arxiv-madminer-3].
- ALICE, ALICES: [1808.00973][ref-arxiv-alice].
## Acknowledgements
We are immensely grateful to all [contributors][repo-madminer-contrib] and bug reporters! In particular, we would like
to thank Zubair Bhatti, Philipp Englert, Lukas Heinrich, Alexander Held, Samuel Homiller and Duccio Pappadopulo.
The SCANDAL inference method is based on [Masked Autoregressive Flows][ref-arxiv-scandal], where our implementation is
a PyTorch port of the original code by George Papamakarios, available at [this repository][repo-maf-main-page].
![IRIS-HEP logo][image-iris-logo]
We are grateful for the support of [IRIS-HEP][web-iris-hep] and [DIANA-HEP][web-diana-hep].
[chat-gitter-badge]: https://badges.gitter.im/madminer/community.svg
[chat-gitter-link]: https://gitter.im/madminer/community
[ci-status-badge]: https://github.com/madminer-tool/madminer/actions/workflows/ci.yml/badge.svg?branch=main
[ci-status-link]: https://github.com/madminer-tool/madminer/actions/workflows/ci.yml?query=branch%3Amain
[code-style-badge]: https://img.shields.io/badge/code%20style-black-000000.svg
[code-style-link]: https://github.com/psf/black
[docs-status-badge]: https://readthedocs.org/projects/madminer/badge/?version=latest
[docs-status-link]: https://madminer.readthedocs.io/en/latest/?badge=latest
[mit-license-badge]: https://img.shields.io/badge/License-MIT-blue.svg
[mit-license-link]: https://github.com/madminer-tool/madminer/blob/main/LICENSE.md
[pypi-version-badge]: https://badge.fury.io/py/madminer.svg
[pypi-version-link]: https://badge.fury.io/py/madminer
[ref-arxiv-badge]: http://img.shields.io/badge/arXiv-1907.10621-B31B1B.svg
[ref-arxiv-link]: https://arxiv.org/abs/1907.10621
[ref-zenodo-badge]: https://zenodo.org/badge/DOI/10.5281/zenodo.1489147.svg
[ref-zenodo-link]: https://doi.org/10.5281/zenodo.1489147
[docs-index]: https://madminer.readthedocs.io/en/latest/
[docs-installation-guide ]: https://madminer.readthedocs.io/en/latest/installation.html
[examples-folder-path]: https://github.com/madminer-tool/madminer/tree/main/examples
[examples-physics-path]: https://github.com/madminer-tool/madminer/tree/main/examples/tutorial_particle_physics
[examples-simulator-path]: https://github.com/madminer-tool/madminer/tree/main/examples/tutorial_toy_simulator
[image-iris-logo]: https://iris-hep.org/assets/logos/Iris-hep-4-no-long-name.png
[image-rascal-diagram]: https://raw.githubusercontent.com/madminer-tool/madminer/main/docs/img/rascal-explainer.png
[jupyter-tutorial-link]: https://madminer-tool.github.io/madminer-tutorial
[ref-arxiv-alice]: https://arxiv.org/abs/1808.00973
[ref-arxiv-carl]: https://arxiv.org/abs/1506.02169
[ref-arxiv-maf]: https://arxiv.org/abs/1705.07057
[ref-arxiv-madminer-1]: https://arxiv.org/abs/1805.00013
[ref-arxiv-madminer-2]: https://arxiv.org/abs/1805.00020
[ref-arxiv-madminer-3]: https://arxiv.org/abs/1805.12244
[ref-arxiv-scandal]: https://arxiv.org/abs/1705.07057
[repo-madminer-contrib]: https://github.com/madminer-tool/madminer/graphs/contributors
[repo-maf-main-page]: https://github.com/gpapamak/maf
[web-diana-hep]: https://diana-hep.org
[web-iris-hep]: https://iris-hep.org
%prep
%autosetup -n madminer-0.9.6
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-madminer -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Tue May 30 2023 Python_Bot <Python_Bot@openeuler.org> - 0.9.6-1
- Package Spec generated
|