From 1137a43116939fc254c4a4bf247f8d374240aa44 Mon Sep 17 00:00:00 2001 From: CoprDistGit Date: Wed, 31 May 2023 07:09:26 +0000 Subject: automatic import of python-magneticalc --- .gitignore | 1 + python-magneticalc.spec | 270 ++++++++++++++++++++++++++++++++++++++++++++++++ sources | 1 + 3 files changed, 272 insertions(+) create mode 100644 python-magneticalc.spec create mode 100644 sources diff --git a/.gitignore b/.gitignore index e69de29..48072db 100644 --- a/.gitignore +++ b/.gitignore @@ -0,0 +1 @@ +/MagnetiCalc-1.15.2.tar.gz diff --git a/python-magneticalc.spec b/python-magneticalc.spec new file mode 100644 index 0000000..1f51596 --- /dev/null +++ b/python-magneticalc.spec @@ -0,0 +1,270 @@ +%global _empty_manifest_terminate_build 0 +Name: python-MagnetiCalc +Version: 1.15.2 +Release: 1 +Summary: MagnetiCalc calculates the magnetic flux density, vector potential, energy, self-inductance and magnetic dipole moment of arbitrary coils. Inside an OpenGL-accelerated GUI, the static magnetic flux density (B-field) or the magnetic vector potential (A-field) is displayed in interactive 3D, using multiple metrics for highlighting the field properties. +License: ISC License +URL: https://github.com/shredEngineer/MagnetiCalc +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/b9/97/e621696b60b1356a465f97b3507fc2e1997767835d15da653d00da695eb6/MagnetiCalc-1.15.2.tar.gz +BuildArch: noarch + +Requires: python3-numpy +Requires: python3-numba +Requires: python3-scipy +Requires: python3-PyQt5 +Requires: python3-vispy +Requires: python3-qtawesome +Requires: python3-sty +Requires: python3-si-prefix +Requires: python3-h5py + +%description +[![PyPI version](https://img.shields.io/pypi/v/MagnetiCalc?label=PyPI)](https://pypi.org/project/MagnetiCalc/) +[![License: ISC](https://img.shields.io/badge/License-ISC-blue.svg)](https://opensource.org/licenses/ISC) +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=TN6YTPVX36YHA&source=url) +[![Documentation](https://img.shields.io/badge/Documentation-API-orange)](https://shredengineer.github.io/MagnetiCalc/) +๐Ÿ€ [Always looking for beta testers!](#contribute) +**What does MagnetiCalc do?** +MagnetiCalc calculates the static magnetic flux density, vector potential, energy, self-inductance +and magnetic dipole moment of arbitrary coils. Inside an OpenGL-accelerated GUI, the magnetic flux density +(B-field, +in units of Tesla) +or the magnetic vector potential +(A-field, +in units of Tesla-meter) +is displayed in interactive 3D, using multiple metrics for highlighting the field properties. +Experimental feature: To calculate the energy and self-inductance of permeable (i.e. ferrous) materials, +different core media can be modeled as regions of variable relative permeability; +however, core saturation is currently not modeled, resulting in excessive flux density values. +**Who needs MagnetiCalc?** +MagnetiCalc does its job for hobbyists, students, engineers and researchers of magnetic phenomena. +I designed MagnetiCalc from scratch, because I didn't want to mess around +with expensive and/or overly complex simulation software +whenever I needed to solve a magnetostatic problem. +**How does it work?** +The B-field calculation +is implemented using the Biot-Savart law [**1**], employing multiprocessing techniques; +MagnetiCalc uses just-in-time compilation ([JIT](https://numba.pydata.org/)) +and, if available, GPU-acceleration ([CUDA](https://numba.pydata.org/numba-doc/dev/cuda/overview.html)) +to achieve high-performance calculations. +Additionally, the use of easily constrainable "sampling volumes" allows for selective calculation over +grids of arbitrary shape and arbitrary relative permeabilities +ยต_r(x) +(experimental). +The shape of any wire is modeled as a 3D piecewise linear curve. +Arbitrary loops of wire are sliced into differential current elements +(l), +each of which contributes to the total resulting field +(A, +B) +at some fixed 3D grid point (x), +summing over the positions of all current elements +(x'): +
+
+At each grid point, the field magnitude (or field angle in some plane) is displayed +using colored arrows and/or dots; +field color and alpha transparency are individually mapped using one of the various +[available metrics](#appendix-metrics). +The coil's energy E [**2**] +and self-inductance L [**3**] +are calculated by summing the squared +B-field +over the entire sampling volume; +ensure that the sampling volume encloses a large, non-singular portion of the field: +
+
+Additionally, the scalar magnetic dipole moment +m [**4**] +is calculated by summing over all current elements: +
+***References*** +[**1**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 204, (5.4).
+[**2**]: Kraus, Electromagnetics, 4th Edition, p. 269, 6-9-1.
+[**3**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 252, (5.157).
+[**4**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 216, (5.54). + +%package -n python3-MagnetiCalc +Summary: MagnetiCalc calculates the magnetic flux density, vector potential, energy, self-inductance and magnetic dipole moment of arbitrary coils. Inside an OpenGL-accelerated GUI, the static magnetic flux density (B-field) or the magnetic vector potential (A-field) is displayed in interactive 3D, using multiple metrics for highlighting the field properties. +Provides: python-MagnetiCalc +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-MagnetiCalc +[![PyPI version](https://img.shields.io/pypi/v/MagnetiCalc?label=PyPI)](https://pypi.org/project/MagnetiCalc/) +[![License: ISC](https://img.shields.io/badge/License-ISC-blue.svg)](https://opensource.org/licenses/ISC) +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=TN6YTPVX36YHA&source=url) +[![Documentation](https://img.shields.io/badge/Documentation-API-orange)](https://shredengineer.github.io/MagnetiCalc/) +๐Ÿ€ [Always looking for beta testers!](#contribute) +**What does MagnetiCalc do?** +MagnetiCalc calculates the static magnetic flux density, vector potential, energy, self-inductance +and magnetic dipole moment of arbitrary coils. Inside an OpenGL-accelerated GUI, the magnetic flux density +(B-field, +in units of Tesla) +or the magnetic vector potential +(A-field, +in units of Tesla-meter) +is displayed in interactive 3D, using multiple metrics for highlighting the field properties. +Experimental feature: To calculate the energy and self-inductance of permeable (i.e. ferrous) materials, +different core media can be modeled as regions of variable relative permeability; +however, core saturation is currently not modeled, resulting in excessive flux density values. +**Who needs MagnetiCalc?** +MagnetiCalc does its job for hobbyists, students, engineers and researchers of magnetic phenomena. +I designed MagnetiCalc from scratch, because I didn't want to mess around +with expensive and/or overly complex simulation software +whenever I needed to solve a magnetostatic problem. +**How does it work?** +The B-field calculation +is implemented using the Biot-Savart law [**1**], employing multiprocessing techniques; +MagnetiCalc uses just-in-time compilation ([JIT](https://numba.pydata.org/)) +and, if available, GPU-acceleration ([CUDA](https://numba.pydata.org/numba-doc/dev/cuda/overview.html)) +to achieve high-performance calculations. +Additionally, the use of easily constrainable "sampling volumes" allows for selective calculation over +grids of arbitrary shape and arbitrary relative permeabilities +ยต_r(x) +(experimental). +The shape of any wire is modeled as a 3D piecewise linear curve. +Arbitrary loops of wire are sliced into differential current elements +(l), +each of which contributes to the total resulting field +(A, +B) +at some fixed 3D grid point (x), +summing over the positions of all current elements +(x'): +
+
+At each grid point, the field magnitude (or field angle in some plane) is displayed +using colored arrows and/or dots; +field color and alpha transparency are individually mapped using one of the various +[available metrics](#appendix-metrics). +The coil's energy E [**2**] +and self-inductance L [**3**] +are calculated by summing the squared +B-field +over the entire sampling volume; +ensure that the sampling volume encloses a large, non-singular portion of the field: +
+
+Additionally, the scalar magnetic dipole moment +m [**4**] +is calculated by summing over all current elements: +
+***References*** +[**1**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 204, (5.4).
+[**2**]: Kraus, Electromagnetics, 4th Edition, p. 269, 6-9-1.
+[**3**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 252, (5.157).
+[**4**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 216, (5.54). + +%package help +Summary: Development documents and examples for MagnetiCalc +Provides: python3-MagnetiCalc-doc +%description help +[![PyPI version](https://img.shields.io/pypi/v/MagnetiCalc?label=PyPI)](https://pypi.org/project/MagnetiCalc/) +[![License: ISC](https://img.shields.io/badge/License-ISC-blue.svg)](https://opensource.org/licenses/ISC) +[![Donate](https://img.shields.io/badge/Donate-PayPal-green.svg)](https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_button_id=TN6YTPVX36YHA&source=url) +[![Documentation](https://img.shields.io/badge/Documentation-API-orange)](https://shredengineer.github.io/MagnetiCalc/) +๐Ÿ€ [Always looking for beta testers!](#contribute) +**What does MagnetiCalc do?** +MagnetiCalc calculates the static magnetic flux density, vector potential, energy, self-inductance +and magnetic dipole moment of arbitrary coils. Inside an OpenGL-accelerated GUI, the magnetic flux density +(B-field, +in units of Tesla) +or the magnetic vector potential +(A-field, +in units of Tesla-meter) +is displayed in interactive 3D, using multiple metrics for highlighting the field properties. +Experimental feature: To calculate the energy and self-inductance of permeable (i.e. ferrous) materials, +different core media can be modeled as regions of variable relative permeability; +however, core saturation is currently not modeled, resulting in excessive flux density values. +**Who needs MagnetiCalc?** +MagnetiCalc does its job for hobbyists, students, engineers and researchers of magnetic phenomena. +I designed MagnetiCalc from scratch, because I didn't want to mess around +with expensive and/or overly complex simulation software +whenever I needed to solve a magnetostatic problem. +**How does it work?** +The B-field calculation +is implemented using the Biot-Savart law [**1**], employing multiprocessing techniques; +MagnetiCalc uses just-in-time compilation ([JIT](https://numba.pydata.org/)) +and, if available, GPU-acceleration ([CUDA](https://numba.pydata.org/numba-doc/dev/cuda/overview.html)) +to achieve high-performance calculations. +Additionally, the use of easily constrainable "sampling volumes" allows for selective calculation over +grids of arbitrary shape and arbitrary relative permeabilities +ยต_r(x) +(experimental). +The shape of any wire is modeled as a 3D piecewise linear curve. +Arbitrary loops of wire are sliced into differential current elements +(l), +each of which contributes to the total resulting field +(A, +B) +at some fixed 3D grid point (x), +summing over the positions of all current elements +(x'): +
+
+At each grid point, the field magnitude (or field angle in some plane) is displayed +using colored arrows and/or dots; +field color and alpha transparency are individually mapped using one of the various +[available metrics](#appendix-metrics). +The coil's energy E [**2**] +and self-inductance L [**3**] +are calculated by summing the squared +B-field +over the entire sampling volume; +ensure that the sampling volume encloses a large, non-singular portion of the field: +
+
+Additionally, the scalar magnetic dipole moment +m [**4**] +is calculated by summing over all current elements: +
+***References*** +[**1**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 204, (5.4).
+[**2**]: Kraus, Electromagnetics, 4th Edition, p. 269, 6-9-1.
+[**3**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 252, (5.157).
+[**4**]: Jackson, Klassische Elektrodynamik, 5. Auflage, S. 216, (5.54). + +%prep +%autosetup -n MagnetiCalc-1.15.2 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-MagnetiCalc -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Wed May 31 2023 Python_Bot - 1.15.2-1 +- Package Spec generated diff --git a/sources b/sources new file mode 100644 index 0000000..8d6e022 --- /dev/null +++ b/sources @@ -0,0 +1 @@ +9087d57022cca851114c91f749ac7774 MagnetiCalc-1.15.2.tar.gz -- cgit v1.2.3