diff options
author | CoprDistGit <infra@openeuler.org> | 2023-05-29 10:22:13 +0000 |
---|---|---|
committer | CoprDistGit <infra@openeuler.org> | 2023-05-29 10:22:13 +0000 |
commit | 9bdc6950e78cd7b9f905aa4bf68a2fb341e29706 (patch) | |
tree | c39f1a479f5a114e7ee0467cb33a4bdde5914e59 | |
parent | 2401c54d95782e47e9804592d185c16240d27e9f (diff) |
automatic import of python-manteia
-rw-r--r-- | .gitignore | 1 | ||||
-rw-r--r-- | python-manteia.spec | 198 | ||||
-rw-r--r-- | sources | 1 |
3 files changed, 200 insertions, 0 deletions
@@ -0,0 +1 @@ +/Manteia-0.0.41.tar.gz diff --git a/python-manteia.spec b/python-manteia.spec new file mode 100644 index 0000000..f3a8a52 --- /dev/null +++ b/python-manteia.spec @@ -0,0 +1,198 @@ +%global _empty_manifest_terminate_build 0 +Name: python-Manteia +Version: 0.0.41 +Release: 1 +Summary: deep learning,NLP,classification,text,bert,distilbert,albert,xlnet,roberta,gpt2,torch,pytorch,active learning,augmentation,data +License: MIT License +URL: https://pypi.org/project/Manteia/ +Source0: https://mirrors.nju.edu.cn/pypi/web/packages/6b/f9/66fae5f7d919d35fa8b246b6d51e95bd5b6bf4093b91974b5ad44fd959d3/Manteia-0.0.41.tar.gz +BuildArch: noarch + + +%description +Designing your neural network to natural language processing. Deep learning has been used extensively in natural language processing (NLP) because +it is well suited for learning the complex underlying structure of a sentence and semantic proximity of various words. +Data cleaning, construction model (Bert, Roberta, Distilbert, XLNet, Albert, GPT, GPT2), +quality measurement training and finally visualization of your results on several dataset ( 20newsgroups, SST-2, PubMed_20k_RCT, DBPedia, Amazon Review Full, Amazon Review Polarity). +You can install it with pip : + __pip install Manteia__ +[Pretraitement]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/boxplot.png) +[Training]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/train.png) +For use with GPU and cuda we recommend the use of [Anaconda](https://www.anaconda.com/open-source) : + __conda create -n manteia_env python=3.7__ + __conda activate manteia_env__ + __conda install pytorch__ + __pip install manteia__ +Example of use Classification : + from Manteia.Classification import Classification + from Manteia.Model import Model + documents = ['What should you do before criticizing Pac-Man? WAKA WAKA WAKA mile in his shoe.','What did Arnold Schwarzenegger say at the abortion clinic? Hasta last vista, baby.'] + labels = ['funny','not funny'] + model = Model(model_name ='roberta') + cl=Classification(model,documents,labels,process_classif=True) +[NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation1.ipynb) +Example of use Generation : + from Manteia.Generation import Generation + from Manteia.Dataset import Dataset + from Manteia.Model import * + ds=Dataset('Short_Jokes') + model = Model(model_name ='gpt2') + text_loader = Create_DataLoader_generation(ds.documents_train[:10000],batch_size=32) + model.load_type() + model.load_tokenizer() + model.load_class() + model.devices() + model.configuration(text_loader) + gn=Generation(model) + gn.model.fit_generation(text_loader) + output = model.predict_generation('What did you expect ?') + output_text = decode_text(output,model.tokenizer) + print(output_text) +[NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation2.ipynb) +[Documentation](https://manteia.readthedocs.io/en/latest/#) +[Pypi](https://pypi.org/project/Manteia/) +[Source](https://github.com/ym001/Manteia) +This code is licensed under MIT. + +%package -n python3-Manteia +Summary: deep learning,NLP,classification,text,bert,distilbert,albert,xlnet,roberta,gpt2,torch,pytorch,active learning,augmentation,data +Provides: python-Manteia +BuildRequires: python3-devel +BuildRequires: python3-setuptools +BuildRequires: python3-pip +%description -n python3-Manteia +Designing your neural network to natural language processing. Deep learning has been used extensively in natural language processing (NLP) because +it is well suited for learning the complex underlying structure of a sentence and semantic proximity of various words. +Data cleaning, construction model (Bert, Roberta, Distilbert, XLNet, Albert, GPT, GPT2), +quality measurement training and finally visualization of your results on several dataset ( 20newsgroups, SST-2, PubMed_20k_RCT, DBPedia, Amazon Review Full, Amazon Review Polarity). +You can install it with pip : + __pip install Manteia__ +[Pretraitement]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/boxplot.png) +[Training]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/train.png) +For use with GPU and cuda we recommend the use of [Anaconda](https://www.anaconda.com/open-source) : + __conda create -n manteia_env python=3.7__ + __conda activate manteia_env__ + __conda install pytorch__ + __pip install manteia__ +Example of use Classification : + from Manteia.Classification import Classification + from Manteia.Model import Model + documents = ['What should you do before criticizing Pac-Man? WAKA WAKA WAKA mile in his shoe.','What did Arnold Schwarzenegger say at the abortion clinic? Hasta last vista, baby.'] + labels = ['funny','not funny'] + model = Model(model_name ='roberta') + cl=Classification(model,documents,labels,process_classif=True) +[NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation1.ipynb) +Example of use Generation : + from Manteia.Generation import Generation + from Manteia.Dataset import Dataset + from Manteia.Model import * + ds=Dataset('Short_Jokes') + model = Model(model_name ='gpt2') + text_loader = Create_DataLoader_generation(ds.documents_train[:10000],batch_size=32) + model.load_type() + model.load_tokenizer() + model.load_class() + model.devices() + model.configuration(text_loader) + gn=Generation(model) + gn.model.fit_generation(text_loader) + output = model.predict_generation('What did you expect ?') + output_text = decode_text(output,model.tokenizer) + print(output_text) +[NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation2.ipynb) +[Documentation](https://manteia.readthedocs.io/en/latest/#) +[Pypi](https://pypi.org/project/Manteia/) +[Source](https://github.com/ym001/Manteia) +This code is licensed under MIT. + +%package help +Summary: Development documents and examples for Manteia +Provides: python3-Manteia-doc +%description help +Designing your neural network to natural language processing. Deep learning has been used extensively in natural language processing (NLP) because +it is well suited for learning the complex underlying structure of a sentence and semantic proximity of various words. +Data cleaning, construction model (Bert, Roberta, Distilbert, XLNet, Albert, GPT, GPT2), +quality measurement training and finally visualization of your results on several dataset ( 20newsgroups, SST-2, PubMed_20k_RCT, DBPedia, Amazon Review Full, Amazon Review Polarity). +You can install it with pip : + __pip install Manteia__ +[Pretraitement]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/boxplot.png) +[Training]( https://raw.githubusercontent.com/ym001/Manteia/master/docs/images/train.png) +For use with GPU and cuda we recommend the use of [Anaconda](https://www.anaconda.com/open-source) : + __conda create -n manteia_env python=3.7__ + __conda activate manteia_env__ + __conda install pytorch__ + __pip install manteia__ +Example of use Classification : + from Manteia.Classification import Classification + from Manteia.Model import Model + documents = ['What should you do before criticizing Pac-Man? WAKA WAKA WAKA mile in his shoe.','What did Arnold Schwarzenegger say at the abortion clinic? Hasta last vista, baby.'] + labels = ['funny','not funny'] + model = Model(model_name ='roberta') + cl=Classification(model,documents,labels,process_classif=True) +[NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation1.ipynb) +Example of use Generation : + from Manteia.Generation import Generation + from Manteia.Dataset import Dataset + from Manteia.Model import * + ds=Dataset('Short_Jokes') + model = Model(model_name ='gpt2') + text_loader = Create_DataLoader_generation(ds.documents_train[:10000],batch_size=32) + model.load_type() + model.load_tokenizer() + model.load_class() + model.devices() + model.configuration(text_loader) + gn=Generation(model) + gn.model.fit_generation(text_loader) + output = model.predict_generation('What did you expect ?') + output_text = decode_text(output,model.tokenizer) + print(output_text) +[NoteBook](https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_presentation2.ipynb) +[Documentation](https://manteia.readthedocs.io/en/latest/#) +[Pypi](https://pypi.org/project/Manteia/) +[Source](https://github.com/ym001/Manteia) +This code is licensed under MIT. + +%prep +%autosetup -n Manteia-0.0.41 + +%build +%py3_build + +%install +%py3_install +install -d -m755 %{buildroot}/%{_pkgdocdir} +if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi +if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi +if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi +if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi +pushd %{buildroot} +if [ -d usr/lib ]; then + find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/lib64 ]; then + find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/bin ]; then + find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst +fi +if [ -d usr/sbin ]; then + find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst +fi +touch doclist.lst +if [ -d usr/share/man ]; then + find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst +fi +popd +mv %{buildroot}/filelist.lst . +mv %{buildroot}/doclist.lst . + +%files -n python3-Manteia -f filelist.lst +%dir %{python3_sitelib}/* + +%files help -f doclist.lst +%{_docdir}/* + +%changelog +* Mon May 29 2023 Python_Bot <Python_Bot@openeuler.org> - 0.0.41-1 +- Package Spec generated @@ -0,0 +1 @@ +05884dac5da0d4d4ed0059c5c9167bae Manteia-0.0.41.tar.gz |