summaryrefslogtreecommitdiff
path: root/python-markdown-frames.spec
blob: 5785666182725a99a5edd36c97f043d84ce139c9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
%global _empty_manifest_terminate_build 0
Name:		python-markdown-frames
Version:	1.0.6
Release:	1
Summary:	Markdown tables parsing to pyspark / pandas DataFrames
License:	MIT License
URL:		https://github.com/exacaster/markdown_frames
Source0:	https://mirrors.nju.edu.cn/pypi/web/packages/b5/1c/e1bf523d26db16a99d1b3c024834f8f5cdb3c52afb6f381fcc6ae6463c5e/markdown_frames-1.0.6.tar.gz
BuildArch:	noarch

Requires:	python3-pandas
Requires:	python3-pyspark

%description
# Markdown Frames

Helper package for testing Apache Spark and Pandas DataFrames.
It makes your data-related unit tests more readable.

## History

While working at [Exacaster](https://exacaster.com/) [Vaidas Armonas](https://github.com/Va1da2) came up with the idea to make testing data more representable. And with the help of his team, he implemented the initial version of this package.

Before that, we had to define our testing data as follows:
```python
schema = ["user_id", "even_type", "item_id", "event_time", "country", "dt"]
input_df = spark.createDataFrame([
    (123456, 'page_view', None, datetime(2017,12,31,23,50,50), "uk", "2017-12-31"),
    (123456, 'item_view', 68471513, datetime(2017,12,31,23,50,55), "uk", "2017-12-31")], 
    schema)
```

And with this library you can define same data like this:
```python
input_data = """ 
    |  user_id   |  even_type  | item_id  |    event_time       | country  |     dt      |
    |   bigint   |   string    |  bigint  |    timestamp        |  string  |   string    |
    | ---------- | ----------- | -------- | ------------------- | -------- | ----------- |
    |   123456   |  page_view  |   None   | 2017-12-31 23:50:50 |   uk     | 2017-12-31  |
    |   123456   |  item_view  | 68471513 | 2017-12-31 23:50:55 |   uk     | 2017-12-31  |
"""
input_df = spark_df(input_data, spark)
```

## Installation
To install this package, run this command on your python environment:
```bash
pip install markdown_frames[pyspark]
```

## Usage

When you have this package installed, you can use it in your unit tests as follows (assuming you are using `pytest-spark` ang have Spark Session available):

```python
from pyspark.sql import SparkSession
from markdown_frames.spark_dataframe import spark_df

def test_your_use_case(spark: SpakSession): -> None
    expected_data = """
        | column1 | column2 | column3 | column4 |
        |   int   |  string |  float  |  bigint |
        | ------- | ------- | ------- | ------- |
        |   1     |   user1 |   3.14  |  111111 |
        |   2     |   None  |   1.618 |  222222 |
        |   3     |   ''    |   2.718 |  333333 |
        """
    expected_df = spark_df(expected_data, spark)

    actaual_df = your_use_case(spark)

    assert expected_df.collect()) == actaual_df.collect())
```

## Supported data types

This package supports all major datatypes, use these type names in your table definitions:
- `int`
- `bigint`
- `float`
- `double`
- `string`
- `boolean`
- `date`
- `timestamp`
- `decimal(precision,scale)` (scale and precision must be integers)
- `array<int>` (int can be replaced by  any of mentioned types)
- `map<string,int>` (string and int can be replaced by any of mentioned types)

For `null` values use `None` keyword.

## License

This project is [MIT](./LICENSE) licensed.


%package -n python3-markdown-frames
Summary:	Markdown tables parsing to pyspark / pandas DataFrames
Provides:	python-markdown-frames
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-markdown-frames
# Markdown Frames

Helper package for testing Apache Spark and Pandas DataFrames.
It makes your data-related unit tests more readable.

## History

While working at [Exacaster](https://exacaster.com/) [Vaidas Armonas](https://github.com/Va1da2) came up with the idea to make testing data more representable. And with the help of his team, he implemented the initial version of this package.

Before that, we had to define our testing data as follows:
```python
schema = ["user_id", "even_type", "item_id", "event_time", "country", "dt"]
input_df = spark.createDataFrame([
    (123456, 'page_view', None, datetime(2017,12,31,23,50,50), "uk", "2017-12-31"),
    (123456, 'item_view', 68471513, datetime(2017,12,31,23,50,55), "uk", "2017-12-31")], 
    schema)
```

And with this library you can define same data like this:
```python
input_data = """ 
    |  user_id   |  even_type  | item_id  |    event_time       | country  |     dt      |
    |   bigint   |   string    |  bigint  |    timestamp        |  string  |   string    |
    | ---------- | ----------- | -------- | ------------------- | -------- | ----------- |
    |   123456   |  page_view  |   None   | 2017-12-31 23:50:50 |   uk     | 2017-12-31  |
    |   123456   |  item_view  | 68471513 | 2017-12-31 23:50:55 |   uk     | 2017-12-31  |
"""
input_df = spark_df(input_data, spark)
```

## Installation
To install this package, run this command on your python environment:
```bash
pip install markdown_frames[pyspark]
```

## Usage

When you have this package installed, you can use it in your unit tests as follows (assuming you are using `pytest-spark` ang have Spark Session available):

```python
from pyspark.sql import SparkSession
from markdown_frames.spark_dataframe import spark_df

def test_your_use_case(spark: SpakSession): -> None
    expected_data = """
        | column1 | column2 | column3 | column4 |
        |   int   |  string |  float  |  bigint |
        | ------- | ------- | ------- | ------- |
        |   1     |   user1 |   3.14  |  111111 |
        |   2     |   None  |   1.618 |  222222 |
        |   3     |   ''    |   2.718 |  333333 |
        """
    expected_df = spark_df(expected_data, spark)

    actaual_df = your_use_case(spark)

    assert expected_df.collect()) == actaual_df.collect())
```

## Supported data types

This package supports all major datatypes, use these type names in your table definitions:
- `int`
- `bigint`
- `float`
- `double`
- `string`
- `boolean`
- `date`
- `timestamp`
- `decimal(precision,scale)` (scale and precision must be integers)
- `array<int>` (int can be replaced by  any of mentioned types)
- `map<string,int>` (string and int can be replaced by any of mentioned types)

For `null` values use `None` keyword.

## License

This project is [MIT](./LICENSE) licensed.


%package help
Summary:	Development documents and examples for markdown-frames
Provides:	python3-markdown-frames-doc
%description help
# Markdown Frames

Helper package for testing Apache Spark and Pandas DataFrames.
It makes your data-related unit tests more readable.

## History

While working at [Exacaster](https://exacaster.com/) [Vaidas Armonas](https://github.com/Va1da2) came up with the idea to make testing data more representable. And with the help of his team, he implemented the initial version of this package.

Before that, we had to define our testing data as follows:
```python
schema = ["user_id", "even_type", "item_id", "event_time", "country", "dt"]
input_df = spark.createDataFrame([
    (123456, 'page_view', None, datetime(2017,12,31,23,50,50), "uk", "2017-12-31"),
    (123456, 'item_view', 68471513, datetime(2017,12,31,23,50,55), "uk", "2017-12-31")], 
    schema)
```

And with this library you can define same data like this:
```python
input_data = """ 
    |  user_id   |  even_type  | item_id  |    event_time       | country  |     dt      |
    |   bigint   |   string    |  bigint  |    timestamp        |  string  |   string    |
    | ---------- | ----------- | -------- | ------------------- | -------- | ----------- |
    |   123456   |  page_view  |   None   | 2017-12-31 23:50:50 |   uk     | 2017-12-31  |
    |   123456   |  item_view  | 68471513 | 2017-12-31 23:50:55 |   uk     | 2017-12-31  |
"""
input_df = spark_df(input_data, spark)
```

## Installation
To install this package, run this command on your python environment:
```bash
pip install markdown_frames[pyspark]
```

## Usage

When you have this package installed, you can use it in your unit tests as follows (assuming you are using `pytest-spark` ang have Spark Session available):

```python
from pyspark.sql import SparkSession
from markdown_frames.spark_dataframe import spark_df

def test_your_use_case(spark: SpakSession): -> None
    expected_data = """
        | column1 | column2 | column3 | column4 |
        |   int   |  string |  float  |  bigint |
        | ------- | ------- | ------- | ------- |
        |   1     |   user1 |   3.14  |  111111 |
        |   2     |   None  |   1.618 |  222222 |
        |   3     |   ''    |   2.718 |  333333 |
        """
    expected_df = spark_df(expected_data, spark)

    actaual_df = your_use_case(spark)

    assert expected_df.collect()) == actaual_df.collect())
```

## Supported data types

This package supports all major datatypes, use these type names in your table definitions:
- `int`
- `bigint`
- `float`
- `double`
- `string`
- `boolean`
- `date`
- `timestamp`
- `decimal(precision,scale)` (scale and precision must be integers)
- `array<int>` (int can be replaced by  any of mentioned types)
- `map<string,int>` (string and int can be replaced by any of mentioned types)

For `null` values use `None` keyword.

## License

This project is [MIT](./LICENSE) licensed.


%prep
%autosetup -n markdown-frames-1.0.6

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-markdown-frames -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Sun Apr 23 2023 Python_Bot <Python_Bot@openeuler.org> - 1.0.6-1
- Package Spec generated