summaryrefslogtreecommitdiff
path: root/python-mct-nightly.spec
blob: a5071a0a7f49b5270ba808fb4c587bd8760ac91c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
%global _empty_manifest_terminate_build 0
Name:		python-mct-nightly
Version:	1.8.0.31052023.post402
Release:	1
Summary:	A Model Compression Toolkit for neural networks
License:	Apache Software License
URL:		https://pypi.org/project/mct-nightly/
Source0:	https://mirrors.aliyun.com/pypi/web/packages/55/3f/eb638da87e581c6d8595c336cbf83d9c4b6b3b30b324b32c8286ed582dd5/mct-nightly-1.8.0.31052023.post402.tar.gz
BuildArch:	noarch

Requires:	python3-networkx
Requires:	python3-tqdm
Requires:	python3-Pillow
Requires:	python3-numpy
Requires:	python3-opencv-python
Requires:	python3-scikit-image
Requires:	python3-scikit-learn
Requires:	python3-tensorboard
Requires:	python3-PuLP
Requires:	python3-matplotlib
Requires:	python3-scipy
Requires:	python3-protobuf
Requires:	python3-mct-quantizers-nightly

%description
# Model Compression Toolkit (MCT)

Model Compression Toolkit (MCT) is an open-source project for neural network model optimization under efficient, constrained hardware.

This project provides researchers, developers, and engineers tools for optimizing and deploying state-of-the-art neural networks on efficient hardware.

Specifically, this project aims to apply quantization to compress neural networks.

<img src="docsrc/images/mct_block_diagram.svg" width="10000">

MCT is developed by researchers and engineers working at Sony Semiconductor Israel.



## Table of Contents

- [Supported features](#supported-features)
- [Getting Started](#getting-started)
- [Results](#results)
- [Contributions](#contributions)
- [License](#license)

## Supported Features

MCT supports different quantization methods:
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_post_training_quantization_experimental.html#ug-keras-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_post_training_quantization_experimental.html#ug-pytorch-post-training-quantization-experimental)
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_gradient_post_training_quantization_experimental.html#ug-keras-gradient-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_gradient_post_training_quantization_experimental.html#ug-pytorch-gradient-post-training-quantization-experimental)
* Quantization aware training (QAT)[*](#experimental-features)


| Quantization Method | Complexity                                    | Computational Cost          |
|---------------------|-----------------------------------------------|-----------------------------|
| PTQ                 | Low                                           | Low (order of minutes)      |
| GPTQ                | Mild (parameters fine-tuning using gradients) | Mild (order of 2-3 hours)   |
| QAT                 | High                                          | High (order of 12-36 hours) |


In addition, MCT supports different quantization schemes for quantizing weights and activations:
* Power-Of-Two (hardware-friendly quantization [1])
* Symmetric
* Uniform

Main features:
* <ins>Graph optimizations:</ins> Transforming the model to an equivalent (yet, more efficient) model (for example, batch-normalization layer folding to its preceding linear layer).
* <ins>Quantization parameter search:</ins> Different methods can be used to minimize the expected added quantization-noise during thresholds search (by default, we use Mean-Square-Error, but other metrics can be used such as No-Clipping, Mean-Average-Error, and more).
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as: 
  * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
  * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).   
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).   


#### Experimental features 

Some features are experimental and subject to future changes. 

For more details, we highly recommend visiting our project website where experimental features are mentioned as experimental.


## Getting Started

This section provides a quick starting guide. We begin with installation via source code or pip server. Then, we provide a short usage example.

### Installation
See the MCT install guide for the pip package, and build from the source.


#### From Source
```
git clone https://github.com/sony/model_optimization.git
python setup.py install
```
#### From PyPi - latest stable release
```
pip install model-compression-toolkit
```

A nightly package is also available (unstable):
```
pip install mct-nightly
```

### Requirements

To run MCT, one of the supported frameworks, Tensorflow/Pytorch, needs to be installed.

For use with Tensorflow please install the packages: 
[tensorflow](https://www.tensorflow.org/install), 
[tensorflow-model-optimization](https://www.tensorflow.org/model_optimization/guide/install)

For use with PyTorch please install the packages: 
[torch](https://pytorch.org/)

Also, a [requirements](requirements.txt) file can be used to set up your environment.


### Supported Python Versions

Currently, MCT is being tested on various Python versions:



| Python Version                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [![Run Tests - Python 3.10](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python310.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python310.yml) |
| [![Run Tests - Python 3.9](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python39.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python39.yml)   |
| [![Run Tests - Python 3.8](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python38.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python38.yml)   |
| [![Run Tests - Python 3.7](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python37.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python37.yml)   |


### Supported NN-Frameworks Versions

Currently, MCT supports compressing models of TensorFlow and PyTorch, and
is tested on various versions:

| TensorFlow Version                                                                                   | PyTorch Version                                                                                          |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf211.yml/badge.svg) | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_13.yml/badge.svg) |
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf210.yml/badge.svg) | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_12.yml/badge.svg) |
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf29.yml/badge.svg)  | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_11.yml/badge.svg) |


### Usage Example 
For an example of how to use the post-training quantization, using Keras,
please use this [link](tutorials/example_keras_mobilenet.py).

For an example using PyTorch, please use this [link](tutorials/example_pytorch_mobilenet_v2.py).

For more examples please see the [tutorials' directory](https://github.com/sony/model_optimization/tree/main/tutorials).


## Results
### Keras
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using 
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.

<img src="docsrc/images/mbv2_accuracy_graph.png">

For more results, please see [1]

### Pytorch
We quantized classification networks from the torchvision library. 
In the following table we present the ImageNet validation results for these models:

| Network Name              | Float Accuracy  | 8Bit Accuracy   | 
| --------------------------| ---------------:| ---------------:| 
| MobileNet V2 [3]          | 71.886          | 71.444           |                                      
| ResNet-18 [3]             | 69.86           | 69.63           |                                      
| SqueezeNet 1.1 [3]        | 58.128          | 57.678          |                                      



## Contributions
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.

*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).


## License
[Apache License 2.0](LICENSE.md).

## References 

[1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).

[2] [MobilNet](https://keras.io/api/applications/mobilenet/#mobilenet-function) from Keras applications.

[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html) 




%package -n python3-mct-nightly
Summary:	A Model Compression Toolkit for neural networks
Provides:	python-mct-nightly
BuildRequires:	python3-devel
BuildRequires:	python3-setuptools
BuildRequires:	python3-pip
%description -n python3-mct-nightly
# Model Compression Toolkit (MCT)

Model Compression Toolkit (MCT) is an open-source project for neural network model optimization under efficient, constrained hardware.

This project provides researchers, developers, and engineers tools for optimizing and deploying state-of-the-art neural networks on efficient hardware.

Specifically, this project aims to apply quantization to compress neural networks.

<img src="docsrc/images/mct_block_diagram.svg" width="10000">

MCT is developed by researchers and engineers working at Sony Semiconductor Israel.



## Table of Contents

- [Supported features](#supported-features)
- [Getting Started](#getting-started)
- [Results](#results)
- [Contributions](#contributions)
- [License](#license)

## Supported Features

MCT supports different quantization methods:
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_post_training_quantization_experimental.html#ug-keras-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_post_training_quantization_experimental.html#ug-pytorch-post-training-quantization-experimental)
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_gradient_post_training_quantization_experimental.html#ug-keras-gradient-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_gradient_post_training_quantization_experimental.html#ug-pytorch-gradient-post-training-quantization-experimental)
* Quantization aware training (QAT)[*](#experimental-features)


| Quantization Method | Complexity                                    | Computational Cost          |
|---------------------|-----------------------------------------------|-----------------------------|
| PTQ                 | Low                                           | Low (order of minutes)      |
| GPTQ                | Mild (parameters fine-tuning using gradients) | Mild (order of 2-3 hours)   |
| QAT                 | High                                          | High (order of 12-36 hours) |


In addition, MCT supports different quantization schemes for quantizing weights and activations:
* Power-Of-Two (hardware-friendly quantization [1])
* Symmetric
* Uniform

Main features:
* <ins>Graph optimizations:</ins> Transforming the model to an equivalent (yet, more efficient) model (for example, batch-normalization layer folding to its preceding linear layer).
* <ins>Quantization parameter search:</ins> Different methods can be used to minimize the expected added quantization-noise during thresholds search (by default, we use Mean-Square-Error, but other metrics can be used such as No-Clipping, Mean-Average-Error, and more).
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as: 
  * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
  * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).   
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).   


#### Experimental features 

Some features are experimental and subject to future changes. 

For more details, we highly recommend visiting our project website where experimental features are mentioned as experimental.


## Getting Started

This section provides a quick starting guide. We begin with installation via source code or pip server. Then, we provide a short usage example.

### Installation
See the MCT install guide for the pip package, and build from the source.


#### From Source
```
git clone https://github.com/sony/model_optimization.git
python setup.py install
```
#### From PyPi - latest stable release
```
pip install model-compression-toolkit
```

A nightly package is also available (unstable):
```
pip install mct-nightly
```

### Requirements

To run MCT, one of the supported frameworks, Tensorflow/Pytorch, needs to be installed.

For use with Tensorflow please install the packages: 
[tensorflow](https://www.tensorflow.org/install), 
[tensorflow-model-optimization](https://www.tensorflow.org/model_optimization/guide/install)

For use with PyTorch please install the packages: 
[torch](https://pytorch.org/)

Also, a [requirements](requirements.txt) file can be used to set up your environment.


### Supported Python Versions

Currently, MCT is being tested on various Python versions:



| Python Version                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [![Run Tests - Python 3.10](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python310.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python310.yml) |
| [![Run Tests - Python 3.9](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python39.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python39.yml)   |
| [![Run Tests - Python 3.8](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python38.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python38.yml)   |
| [![Run Tests - Python 3.7](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python37.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python37.yml)   |


### Supported NN-Frameworks Versions

Currently, MCT supports compressing models of TensorFlow and PyTorch, and
is tested on various versions:

| TensorFlow Version                                                                                   | PyTorch Version                                                                                          |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf211.yml/badge.svg) | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_13.yml/badge.svg) |
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf210.yml/badge.svg) | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_12.yml/badge.svg) |
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf29.yml/badge.svg)  | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_11.yml/badge.svg) |


### Usage Example 
For an example of how to use the post-training quantization, using Keras,
please use this [link](tutorials/example_keras_mobilenet.py).

For an example using PyTorch, please use this [link](tutorials/example_pytorch_mobilenet_v2.py).

For more examples please see the [tutorials' directory](https://github.com/sony/model_optimization/tree/main/tutorials).


## Results
### Keras
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using 
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.

<img src="docsrc/images/mbv2_accuracy_graph.png">

For more results, please see [1]

### Pytorch
We quantized classification networks from the torchvision library. 
In the following table we present the ImageNet validation results for these models:

| Network Name              | Float Accuracy  | 8Bit Accuracy   | 
| --------------------------| ---------------:| ---------------:| 
| MobileNet V2 [3]          | 71.886          | 71.444           |                                      
| ResNet-18 [3]             | 69.86           | 69.63           |                                      
| SqueezeNet 1.1 [3]        | 58.128          | 57.678          |                                      



## Contributions
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.

*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).


## License
[Apache License 2.0](LICENSE.md).

## References 

[1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).

[2] [MobilNet](https://keras.io/api/applications/mobilenet/#mobilenet-function) from Keras applications.

[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html) 




%package help
Summary:	Development documents and examples for mct-nightly
Provides:	python3-mct-nightly-doc
%description help
# Model Compression Toolkit (MCT)

Model Compression Toolkit (MCT) is an open-source project for neural network model optimization under efficient, constrained hardware.

This project provides researchers, developers, and engineers tools for optimizing and deploying state-of-the-art neural networks on efficient hardware.

Specifically, this project aims to apply quantization to compress neural networks.

<img src="docsrc/images/mct_block_diagram.svg" width="10000">

MCT is developed by researchers and engineers working at Sony Semiconductor Israel.



## Table of Contents

- [Supported features](#supported-features)
- [Getting Started](#getting-started)
- [Results](#results)
- [Contributions](#contributions)
- [License](#license)

## Supported Features

MCT supports different quantization methods:
* Post-training quantization (PTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_post_training_quantization_experimental.html#ug-keras-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_post_training_quantization_experimental.html#ug-pytorch-post-training-quantization-experimental)
* Gradient-based post-training quantization (GPTQ): [Keras API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/keras_gradient_post_training_quantization_experimental.html#ug-keras-gradient-post-training-quantization-experimental), [PyTorch API](https://sony.github.io/model_optimization/docs/api/experimental_api_docs/methods/pytorch_gradient_post_training_quantization_experimental.html#ug-pytorch-gradient-post-training-quantization-experimental)
* Quantization aware training (QAT)[*](#experimental-features)


| Quantization Method | Complexity                                    | Computational Cost          |
|---------------------|-----------------------------------------------|-----------------------------|
| PTQ                 | Low                                           | Low (order of minutes)      |
| GPTQ                | Mild (parameters fine-tuning using gradients) | Mild (order of 2-3 hours)   |
| QAT                 | High                                          | High (order of 12-36 hours) |


In addition, MCT supports different quantization schemes for quantizing weights and activations:
* Power-Of-Two (hardware-friendly quantization [1])
* Symmetric
* Uniform

Main features:
* <ins>Graph optimizations:</ins> Transforming the model to an equivalent (yet, more efficient) model (for example, batch-normalization layer folding to its preceding linear layer).
* <ins>Quantization parameter search:</ins> Different methods can be used to minimize the expected added quantization-noise during thresholds search (by default, we use Mean-Square-Error, but other metrics can be used such as No-Clipping, Mean-Average-Error, and more).
* <ins>Advanced quantization algorithms:</ins> To prevent a performance degradation some algorithms are applied such as: 
  * <ins>Shift negative correction:</ins> Symmetric activation quantization can hurt the model's performance when some layers output both negative and positive activations, but their range is asymmetric. For more details please visit [1].
  * <ins>Outliers filtering:</ins> Computing z-score for activation statistics to detect and remove outliers.
* <ins>Clustering:</ins> Using non-uniform quantization grid to quantize the weights and activations to match their distributions.[*](#experimental-features)
* <ins>Mixed-precision search:</ins> Assigning quantization bit-width per layer (for weights/activations), based on the layer's sensitivity to different bit-widths.
* <ins>Visualization:</ins> You can use TensorBoard to observe useful information for troubleshooting the quantized model's performance (for example, the model in different phases of the quantization, collected statistics, similarity between layers of the float and quantized model and bit-width configuration for mixed-precision quantization). For more details, please read the [visualization documentation](https://sony.github.io/model_optimization/docs/guidelines/visualization.html).   
* <ins>Target Platform Capabilities:</ins> The Target Platform Capabilities (TPC) describes the target platform (an edge device with dedicated hardware). For more details, please read the [TPC README](model_compression_toolkit/target_platform_capabilities/README.md).   


#### Experimental features 

Some features are experimental and subject to future changes. 

For more details, we highly recommend visiting our project website where experimental features are mentioned as experimental.


## Getting Started

This section provides a quick starting guide. We begin with installation via source code or pip server. Then, we provide a short usage example.

### Installation
See the MCT install guide for the pip package, and build from the source.


#### From Source
```
git clone https://github.com/sony/model_optimization.git
python setup.py install
```
#### From PyPi - latest stable release
```
pip install model-compression-toolkit
```

A nightly package is also available (unstable):
```
pip install mct-nightly
```

### Requirements

To run MCT, one of the supported frameworks, Tensorflow/Pytorch, needs to be installed.

For use with Tensorflow please install the packages: 
[tensorflow](https://www.tensorflow.org/install), 
[tensorflow-model-optimization](https://www.tensorflow.org/model_optimization/guide/install)

For use with PyTorch please install the packages: 
[torch](https://pytorch.org/)

Also, a [requirements](requirements.txt) file can be used to set up your environment.


### Supported Python Versions

Currently, MCT is being tested on various Python versions:



| Python Version                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [![Run Tests - Python 3.10](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python310.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python310.yml) |
| [![Run Tests - Python 3.9](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python39.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python39.yml)   |
| [![Run Tests - Python 3.8](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python38.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python38.yml)   |
| [![Run Tests - Python 3.7](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python37.yml/badge.svg)](https://github.com/sony/model_optimization/actions/workflows/run_tests_suite_python37.yml)   |


### Supported NN-Frameworks Versions

Currently, MCT supports compressing models of TensorFlow and PyTorch, and
is tested on various versions:

| TensorFlow Version                                                                                   | PyTorch Version                                                                                          |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf211.yml/badge.svg) | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_13.yml/badge.svg) |
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf210.yml/badge.svg) | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_12.yml/badge.svg) |
| ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_tf29.yml/badge.svg)  | ![tests](https://github.com/sony/model_optimization/actions/workflows/run_tests_torch1_11.yml/badge.svg) |


### Usage Example 
For an example of how to use the post-training quantization, using Keras,
please use this [link](tutorials/example_keras_mobilenet.py).

For an example using PyTorch, please use this [link](tutorials/example_pytorch_mobilenet_v2.py).

For more examples please see the [tutorials' directory](https://github.com/sony/model_optimization/tree/main/tutorials).


## Results
### Keras
Graph of [MobileNetV2](https://keras.io/api/applications/mobilenet/) accuracy on ImageNet vs average bit-width of weights, using 
single-precision quantization, mixed-precision quantization, and mixed-precision quantization with GPTQ.

<img src="docsrc/images/mbv2_accuracy_graph.png">

For more results, please see [1]

### Pytorch
We quantized classification networks from the torchvision library. 
In the following table we present the ImageNet validation results for these models:

| Network Name              | Float Accuracy  | 8Bit Accuracy   | 
| --------------------------| ---------------:| ---------------:| 
| MobileNet V2 [3]          | 71.886          | 71.444           |                                      
| ResNet-18 [3]             | 69.86           | 69.63           |                                      
| SqueezeNet 1.1 [3]        | 58.128          | 57.678          |                                      



## Contributions
MCT aims at keeping a more up-to-date fork and welcomes contributions from anyone.

*You will find more information about contributions in the [Contribution guide](CONTRIBUTING.md).


## License
[Apache License 2.0](LICENSE.md).

## References 

[1] Habi, H.V., Peretz, R., Cohen, E., Dikstein, L., Dror, O., Diamant, I., Jennings, R.H. and Netzer, A., 2021. [HPTQ: Hardware-Friendly Post Training Quantization. arXiv preprint](https://arxiv.org/abs/2109.09113).

[2] [MobilNet](https://keras.io/api/applications/mobilenet/#mobilenet-function) from Keras applications.

[3] [TORCHVISION.MODELS](https://pytorch.org/vision/stable/models.html) 




%prep
%autosetup -n mct-nightly-1.8.0.31052023.post402

%build
%py3_build

%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
	find usr/lib -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
	find usr/lib64 -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
	find usr/bin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
	find usr/sbin -type f -printf "\"/%h/%f\"\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
	find usr/share/man -type f -printf "\"/%h/%f.gz\"\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .

%files -n python3-mct-nightly -f filelist.lst
%dir %{python3_sitelib}/*

%files help -f doclist.lst
%{_docdir}/*

%changelog
* Thu Jun 08 2023 Python_Bot <Python_Bot@openeuler.org> - 1.8.0.31052023.post402-1
- Package Spec generated