1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
|
%global _empty_manifest_terminate_build 0
Name: python-mem-top
Version: 0.2.1
Release: 1
Summary: Shows top suspects for memory leaks in your Python program.
License: MIT
URL: https://github.com/denis-ryzhkov/mem_top
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/c3/f0/8b6cc0ff682dee2760bfeb045fb4c0188a6040aee36f6c1e0e4568d4609e/mem_top-0.2.1.tar.gz
BuildArch: noarch
%description
Usage::
pip install mem_top
from mem_top import mem_top
# From time to time:
logging.debug(mem_top())
# print(mem_top())
# Notice which counters keep increasing over time - they are the suspects.
Counters:
"mem_top" iterates all objects found in memory and calculates:
* refs - number of direct references from this object to other objects, like keys and values of dict
* E.g. a dict {("some", "complex", "key"): "value"} will have "refs: 2" - 1 ref for key, 1 ref for value
* Its key ("some", "complex", "key") will have "refs: 3" - 1 ref per item
* bytes - size of this object in bytes
* types - number of objects of this type still kept in memory after garbage collection
Real life example::
refs:
144997 <type 'collections.defaultdict'> defaultdict(<type 'collections.deque'>, {<GearmanJobRequest task='...', unique='.
144996 <type 'dict'> {'.:..............:.......': <GearmanJobRequest task='..................', unique='.................
18948 <type 'dict'> {...
1578 <type 'dict'> {...
968 <type 'dict'> {...
968 <type 'dict'> {...
968 <type 'dict'> {...
767 <type 'list'> [...
726 <type 'dict'> {...
608 <type 'dict'> {...
types:
292499 <type 'dict'>
217912 <type 'collections.deque'>
72702 <class 'gearman.job.GearmanJob'>
72702 <class 'gearman.job.GearmanJobRequest'>
12340 <type '...
3103 <type '...
1112 <type '...
855 <type '...
767 <type '...
532 <type '...
* Noticed a leak of 6GB RAM and counting.
* Added "mem_top" and let it run for a while.
* When got the result above it became absolutely clear who is leaking here:
the Python client of Gearman kept increasing its counters over time.
* Found its known bug - https://github.com/Yelp/python-gearman/issues/10
leaking defaultdict of deques, and a dict of GearmanJobRequest-s,
just as the "mem_top" showed.
* Replaced "python-gearman" - long story: stale 2.0.2 at PyPI, broken 2.0.X at github, etc.
* "mem_top" confirmed the leak is now completely closed.
Updates:
* Pass e.g. "verbose_types=[dict, list]" to store their values, sorted by "repr" length, in "verbose_file_name".
* Added "bytes" top.
Config defaults::
mem_top(
limit=10, # limit of top lines per section
width=100, # width of each line in chars
sep='\n', # char to separate lines with
refs_format='{num}\t{type} {obj}', # format of line in "refs" section
bytes_format='{num}\t {obj}', # format of line in "bytes" section
types_format='{num}\t {obj}', # format of line in "types" section
verbose_types=None, # list of types to sort values by `repr` length
verbose_file_name='/tmp/mem_top', # name of file to store verbose values in
)
See also:
* https://docs.python.org/2/library/gc.html#gc.garbage
* https://pypi.python.org/pypi/objgraph
%package -n python3-mem-top
Summary: Shows top suspects for memory leaks in your Python program.
Provides: python-mem-top
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-mem-top
Usage::
pip install mem_top
from mem_top import mem_top
# From time to time:
logging.debug(mem_top())
# print(mem_top())
# Notice which counters keep increasing over time - they are the suspects.
Counters:
"mem_top" iterates all objects found in memory and calculates:
* refs - number of direct references from this object to other objects, like keys and values of dict
* E.g. a dict {("some", "complex", "key"): "value"} will have "refs: 2" - 1 ref for key, 1 ref for value
* Its key ("some", "complex", "key") will have "refs: 3" - 1 ref per item
* bytes - size of this object in bytes
* types - number of objects of this type still kept in memory after garbage collection
Real life example::
refs:
144997 <type 'collections.defaultdict'> defaultdict(<type 'collections.deque'>, {<GearmanJobRequest task='...', unique='.
144996 <type 'dict'> {'.:..............:.......': <GearmanJobRequest task='..................', unique='.................
18948 <type 'dict'> {...
1578 <type 'dict'> {...
968 <type 'dict'> {...
968 <type 'dict'> {...
968 <type 'dict'> {...
767 <type 'list'> [...
726 <type 'dict'> {...
608 <type 'dict'> {...
types:
292499 <type 'dict'>
217912 <type 'collections.deque'>
72702 <class 'gearman.job.GearmanJob'>
72702 <class 'gearman.job.GearmanJobRequest'>
12340 <type '...
3103 <type '...
1112 <type '...
855 <type '...
767 <type '...
532 <type '...
* Noticed a leak of 6GB RAM and counting.
* Added "mem_top" and let it run for a while.
* When got the result above it became absolutely clear who is leaking here:
the Python client of Gearman kept increasing its counters over time.
* Found its known bug - https://github.com/Yelp/python-gearman/issues/10
leaking defaultdict of deques, and a dict of GearmanJobRequest-s,
just as the "mem_top" showed.
* Replaced "python-gearman" - long story: stale 2.0.2 at PyPI, broken 2.0.X at github, etc.
* "mem_top" confirmed the leak is now completely closed.
Updates:
* Pass e.g. "verbose_types=[dict, list]" to store their values, sorted by "repr" length, in "verbose_file_name".
* Added "bytes" top.
Config defaults::
mem_top(
limit=10, # limit of top lines per section
width=100, # width of each line in chars
sep='\n', # char to separate lines with
refs_format='{num}\t{type} {obj}', # format of line in "refs" section
bytes_format='{num}\t {obj}', # format of line in "bytes" section
types_format='{num}\t {obj}', # format of line in "types" section
verbose_types=None, # list of types to sort values by `repr` length
verbose_file_name='/tmp/mem_top', # name of file to store verbose values in
)
See also:
* https://docs.python.org/2/library/gc.html#gc.garbage
* https://pypi.python.org/pypi/objgraph
%package help
Summary: Development documents and examples for mem-top
Provides: python3-mem-top-doc
%description help
Usage::
pip install mem_top
from mem_top import mem_top
# From time to time:
logging.debug(mem_top())
# print(mem_top())
# Notice which counters keep increasing over time - they are the suspects.
Counters:
"mem_top" iterates all objects found in memory and calculates:
* refs - number of direct references from this object to other objects, like keys and values of dict
* E.g. a dict {("some", "complex", "key"): "value"} will have "refs: 2" - 1 ref for key, 1 ref for value
* Its key ("some", "complex", "key") will have "refs: 3" - 1 ref per item
* bytes - size of this object in bytes
* types - number of objects of this type still kept in memory after garbage collection
Real life example::
refs:
144997 <type 'collections.defaultdict'> defaultdict(<type 'collections.deque'>, {<GearmanJobRequest task='...', unique='.
144996 <type 'dict'> {'.:..............:.......': <GearmanJobRequest task='..................', unique='.................
18948 <type 'dict'> {...
1578 <type 'dict'> {...
968 <type 'dict'> {...
968 <type 'dict'> {...
968 <type 'dict'> {...
767 <type 'list'> [...
726 <type 'dict'> {...
608 <type 'dict'> {...
types:
292499 <type 'dict'>
217912 <type 'collections.deque'>
72702 <class 'gearman.job.GearmanJob'>
72702 <class 'gearman.job.GearmanJobRequest'>
12340 <type '...
3103 <type '...
1112 <type '...
855 <type '...
767 <type '...
532 <type '...
* Noticed a leak of 6GB RAM and counting.
* Added "mem_top" and let it run for a while.
* When got the result above it became absolutely clear who is leaking here:
the Python client of Gearman kept increasing its counters over time.
* Found its known bug - https://github.com/Yelp/python-gearman/issues/10
leaking defaultdict of deques, and a dict of GearmanJobRequest-s,
just as the "mem_top" showed.
* Replaced "python-gearman" - long story: stale 2.0.2 at PyPI, broken 2.0.X at github, etc.
* "mem_top" confirmed the leak is now completely closed.
Updates:
* Pass e.g. "verbose_types=[dict, list]" to store their values, sorted by "repr" length, in "verbose_file_name".
* Added "bytes" top.
Config defaults::
mem_top(
limit=10, # limit of top lines per section
width=100, # width of each line in chars
sep='\n', # char to separate lines with
refs_format='{num}\t{type} {obj}', # format of line in "refs" section
bytes_format='{num}\t {obj}', # format of line in "bytes" section
types_format='{num}\t {obj}', # format of line in "types" section
verbose_types=None, # list of types to sort values by `repr` length
verbose_file_name='/tmp/mem_top', # name of file to store verbose values in
)
See also:
* https://docs.python.org/2/library/gc.html#gc.garbage
* https://pypi.python.org/pypi/objgraph
%prep
%autosetup -n mem-top-0.2.1
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-mem-top -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Fri May 05 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.1-1
- Package Spec generated
|