1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
|
%global _empty_manifest_terminate_build 0
Name: python-memoization
Version: 0.4.0
Release: 1
Summary: A powerful caching library for Python, with TTL support and multiple algorithm options. (https://github.com/lonelyenvoy/python-memoization)
License: MIT
URL: https://github.com/lonelyenvoy/python-memoization
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/af/53/e948a943e16423a87ced16e34ea7583c300e161a4c3e85d47d77d83830bf/memoization-0.4.0.tar.gz
BuildArch: noarch
%description
# python-memoization
[![Repository][repositorysvg]][repository] [![Build Status][travismaster]][travis] [![Codacy Badge][codacysvg]][codacy]
[![Coverage Status][coverallssvg]][coveralls] [![Downloads][downloadssvg]][repository]
<br>
[![PRs welcome][prsvg]][pr] [![License][licensesvg]][license] [![Supports Python][pythonsvg]][python]
A powerful caching library for Python, with TTL support and multiple algorithm options.
If you like this work, please [star](https://github.com/lonelyenvoy/python-memoization) it on GitHub.
## Why choose this library?
Perhaps you know about [```functools.lru_cache```](https://docs.python.org/3/library/functools.html#functools.lru_cache)
in Python 3, and you may be wondering why we are reinventing the wheel.
Well, actually not. This lib is based on ```functools```. Please find below the comparison with ```lru_cache```.
|Features|```functools.lru_cache```|```memoization```|
|--------|-------------------|-----------|
|Configurable max size|✔️|✔️|
|Thread safety|✔️|✔️|
|Flexible argument typing (typed & untyped)|✔️|Always typed|
|Cache statistics|✔️|✔️|
|LRU (Least Recently Used) as caching algorithm|✔️|✔️|
|LFU (Least Frequently Used) as caching algorithm|No support|✔️|
|FIFO (First In First Out) as caching algorithm|No support|✔️|
|Extensibility for new caching algorithms|No support|✔️|
|TTL (Time-To-Live) support|No support|✔️|
|Support for unhashable arguments (dict, list, etc.)|No support|✔️|
|Custom cache keys|No support|✔️|
|On-demand partial cache clearing|No support|✔️|
|Iterating through the cache|No support|✔️|
|Python version|3.2+|3.4+|
```memoization``` solves some drawbacks of ```functools.lru_cache```:
1. ```lru_cache``` does not support __unhashable types__, which means function arguments cannot contain dict or list.
```python
>>> from functools import lru_cache
>>> @lru_cache()
... def f(x): return x
...
>>> f([1, 2]) # unsupported
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
```
2. ```lru_cache``` is vulnerable to [__hash collision attack__](https://learncryptography.com/hash-functions/hash-collision-attack)
and can be hacked or compromised. Using this technique, attackers can make your program __unexpectedly slow__ by
feeding the cached function with certain cleverly designed inputs. However, in ```memoization```, caching is always
typed, which means ```f(3)``` and ```f(3.0)``` will be treated as different calls and cached separately. Also,
you can build your own cache key with a unique hashing strategy. These measures __prevents the attack__ from
happening (or at least makes it a lot harder).
```python
>>> hash((1,))
3430019387558
>>> hash(3430019387558.0) # two different arguments with an identical hash value
3430019387558
```
3. Unlike `lru_cache`, `memoization` is designed to be highly extensible, which make it easy for developers to add and integrate
__any caching algorithms__ (beyond FIFO, LRU and LFU) into this library. See [Contributing Guidance](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTING.md) for further detail.
## Installation
```bash
pip install -U memoization
```
## 1-Minute Tutorial
```python
from memoization import cached
@cached
def func(arg):
... # do something slow
```
Simple enough - the results of ```func()``` are cached.
Repetitive calls to ```func()``` with the same arguments run ```func()``` only once, enhancing performance.
>:warning:__WARNING:__ for functions with unhashable arguments, the default setting may not enable `memoization` to work properly. See [custom cache keys](https://github.com/lonelyenvoy/python-memoization#custom-cache-keys) section below for details.
## 15-Minute Tutorial
You will learn about the advanced features in the following tutorial, which enable you to customize `memoization` .
Configurable options include `ttl`, `max_size`, `algorithm`, `thread_safe`, `order_independent` and `custom_key_maker`.
### TTL (Time-To-Live)
```python
@cached(ttl=5) # the cache expires after 5 seconds
def expensive_db_query(user_id):
...
```
For impure functions, TTL (in second) will be a solution. This will be useful when the function returns resources that is valid only for a short time, e.g. fetching something from databases.
### Limited cache capacity
```python
@cached(max_size=128) # the cache holds no more than 128 items
def get_a_very_large_object(filename):
...
```
By default, if you don't specify ```max_size```, the cache can hold unlimited number of items.
When the cache is fully occupied, the former data will be overwritten by a certain algorithm described below.
### Choosing your caching algorithm
```python
from memoization import cached, CachingAlgorithmFlag
@cached(max_size=128, algorithm=CachingAlgorithmFlag.LFU) # the cache overwrites items using the LFU algorithm
def func(arg):
...
```
Possible values for ```algorithm``` are:
- `CachingAlgorithmFlag.LRU`: _Least Recently Used_ (default)
- `CachingAlgorithmFlag.LFU`: _Least Frequently Used_
- `CachingAlgorithmFlag.FIFO`: _First In First Out_
This option is valid only when a ```max_size``` is explicitly specified.
### Thread safe?
```python
@cached(thread_safe=False)
def func(arg):
...
```
```thread_safe``` is ```True``` by default. Setting it to ```False``` enhances performance.
### Order-independent cache key
By default, the following function calls will be treated differently and cached twice, which means the cache misses at the second call.
```python
func(a=1, b=1)
func(b=1, a=1)
```
You can avoid this behavior by passing an `order_independent` argument to the decorator, although it will slow down the performance a little bit.
```python
@cached(order_independent=True)
def func(**kwargs):
...
```
### Custom cache keys
Prior to memorize your function inputs and outputs (i.e. putting them into a cache), `memoization` needs to
build a __cache key__ using the inputs, so that the outputs can be retrieved later.
> By default, `memoization` tries to combine all your function
arguments and calculate its hash value using `hash()`. If it turns out that parts of your arguments are
unhashable, `memoization` will fall back to turning them into a string using `str()`. This behavior relies
on the assumption that the string exactly represents the internal state of the arguments, which is true for
built-in types.
However, this is not true for all objects. __If you pass objects which are
instances of non-built-in classes, sometimes you will need to override the default key-making procedure__,
because the `str()` function on these objects may not hold the correct information about their states.
Here are some suggestions. __Implementations of a valid key maker__:
- MUST be a function with the same signature as the cached function.
- MUST produce unique keys, which means two sets of different arguments always map to two different keys.
- MUST produce hashable keys, and a key is comparable with another key (`memoization` only needs to check for their equality).
- should compute keys efficiently and produce small objects as keys.
Example:
```python
def get_employee_id(employee):
return employee.id # returns a string or a integer
@cached(custom_key_maker=get_employee_id)
def calculate_performance(employee):
...
```
Note that writing a robust key maker function can be challenging in some situations. If you find it difficult,
feel free to ask for help by submitting an [issue](https://github.com/lonelyenvoy/python-memoization/issues).
### Knowing how well the cache is behaving
```python
>>> @cached
... def f(x): return x
...
>>> f.cache_info()
CacheInfo(hits=0, misses=0, current_size=0, max_size=None, algorithm=<CachingAlgorithmFlag.LRU: 2>, ttl=None, thread_safe=True, order_independent=False, use_custom_key=False)
```
With ```cache_info```, you can retrieve the number of ```hits``` and ```misses``` of the cache, and other information indicating the caching status.
- `hits`: the number of cache hits
- `misses`: the number of cache misses
- `current_size`: the number of items that were cached
- `max_size`: the maximum number of items that can be cached (user-specified)
- `algorithm`: caching algorithm (user-specified)
- `ttl`: Time-To-Live value (user-specified)
- `thread_safe`: whether the cache is thread safe (user-specified)
- `order_independent`: whether the cache is kwarg-order-independent (user-specified)
- `use_custom_key`: whether a custom key maker is used
### Other APIs
- Access the original undecorated function `f` by `f.__wrapped__`.
- Clear the cache by `f.cache_clear()`.
- Check whether the cache is empty by `f.cache_is_empty()`.
- Check whether the cache is full by `f.cache_is_full()`.
- Disable `SyntaxWarning` by `memoization.suppress_warnings()`.
## Advanced API References
<details>
<summary>Details</summary>
### Checking whether the cache contains something
#### cache_contains_argument(function_arguments, alive_only)
```
Return True if the cache contains a cached item with the specified function call arguments
:param function_arguments: Can be a list, a tuple or a dict.
- Full arguments: use a list to represent both positional arguments and keyword
arguments. The list contains two elements, a tuple (positional arguments) and
a dict (keyword arguments). For example,
f(1, 2, 3, a=4, b=5, c=6)
can be represented by:
[(1, 2, 3), {'a': 4, 'b': 5, 'c': 6}]
- Positional arguments only: when the arguments does not include keyword arguments,
a tuple can be used to represent positional arguments. For example,
f(1, 2, 3)
can be represented by:
(1, 2, 3)
- Keyword arguments only: when the arguments does not include positional arguments,
a dict can be used to represent keyword arguments. For example,
f(a=4, b=5, c=6)
can be represented by:
{'a': 4, 'b': 5, 'c': 6}
:param alive_only: Whether to check alive cache item only (default to True).
:return: True if the desired cached item is present, False otherwise.
```
#### cache_contains_result(return_value, alive_only)
```
Return True if the cache contains a cache item with the specified user function return value. O(n) time
complexity.
:param return_value: A return value coming from the user function.
:param alive_only: Whether to check alive cache item only (default to True).
:return: True if the desired cached item is present, False otherwise.
```
### Iterating through the cache
#### cache_arguments()
```
Get user function arguments of all alive cache elements
see also: cache_items()
Example:
@cached
def f(a, b, c, d):
...
f(1, 2, c=3, d=4)
for argument in f.cache_arguments():
print(argument) # ((1, 2), {'c': 3, 'd': 4})
:return: an iterable which iterates through a list of a tuple containing a tuple (positional arguments) and
a dict (keyword arguments)
```
#### cache_results()
```
Get user function return values of all alive cache elements
see also: cache_items()
Example:
@cached
def f(a):
return a
f('hello')
for result in f.cache_results():
print(result) # 'hello'
:return: an iterable which iterates through a list of user function result (of any type)
```
#### cache_items()
```
Get cache items, i.e. entries of all alive cache elements, in the form of (argument, result).
argument: a tuple containing a tuple (positional arguments) and a dict (keyword arguments).
result: a user function return value of any type.
see also: cache_arguments(), cache_results().
Example:
@cached
def f(a, b, c, d):
return 'the answer is ' + str(a)
f(1, 2, c=3, d=4)
for argument, result in f.cache_items():
print(argument) # ((1, 2), {'c': 3, 'd': 4})
print(result) # 'the answer is 1'
:return: an iterable which iterates through a list of (argument, result) entries
```
#### cache_for_each()
```
Perform the given action for each cache element in an order determined by the algorithm until all
elements have been processed or the action throws an error
:param consumer: an action function to process the cache elements. Must have 3 arguments:
def consumer(user_function_arguments, user_function_result, is_alive): ...
user_function_arguments is a tuple holding arguments in the form of (args, kwargs).
args is a tuple holding positional arguments.
kwargs is a dict holding keyword arguments.
for example, for a function: foo(a, b, c, d), calling it by: foo(1, 2, c=3, d=4)
user_function_arguments == ((1, 2), {'c': 3, 'd': 4})
user_function_result is a return value coming from the user function.
is_alive is a boolean value indicating whether the cache is still alive
(if a TTL is given).
```
### Removing something from the cache
#### cache_clear()
```
Clear the cache and its statistics information
```
#### cache_remove_if(predicate)
```
Remove all cache elements that satisfy the given predicate
:param predicate: a predicate function to judge whether the cache elements should be removed. Must
have 3 arguments, and returns True or False:
def consumer(user_function_arguments, user_function_result, is_alive): ...
user_function_arguments is a tuple holding arguments in the form of (args, kwargs).
args is a tuple holding positional arguments.
kwargs is a dict holding keyword arguments.
for example, for a function: foo(a, b, c, d), calling it by: foo(1, 2, c=3, d=4)
user_function_arguments == ((1, 2), {'c': 3, 'd': 4})
user_function_result is a return value coming from the user function.
is_alive is a boolean value indicating whether the cache is still alive
(if a TTL is given).
:return: True if at least one element is removed, False otherwise.
```
</details>
## Q&A
1. **Q: There are duplicated code in `memoization` and most of them can be eliminated by using another level of
abstraction (e.g. classes and multiple inheritance). Why not refactor?**
A: We would like to keep the code in a proper level of abstraction. However, these abstractions make it run slower.
As this is a caching library focusing on speed, we have to give up some elegance for better performance. Refactoring
is our future work.
2. **Q: I have submitted an issue and not received a reply for a long time. Anyone can help me?**
A: Sorry! We are not working full-time, but working voluntarily on this project, so you might experience some delay.
We appreciate your patience.
## Contributing
This project welcomes contributions from anyone.
- [Read Contributing Guidance](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTING.md) first.
- [Submit bugs](https://github.com/lonelyenvoy/python-memoization/issues) and help us verify fixes.
- [Submit pull requests](https://github.com/lonelyenvoy/python-memoization/pulls) for bug fixes and features and discuss existing proposals. Please make sure that your PR passes the tests in ```test.py```.
- [See contributors](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTORS.md) of this project.
## License
[The MIT License](https://github.com/lonelyenvoy/python-memoization/blob/master/LICENSE)
[pythonsvg]: https://img.shields.io/pypi/pyversions/memoization.svg
[python]: https://www.python.org
[travismaster]: https://travis-ci.com/lonelyenvoy/python-memoization.svg?branch=master
[travis]: https://travis-ci.com/lonelyenvoy/python-memoization
[coverallssvg]: https://coveralls.io/repos/github/lonelyenvoy/python-memoization/badge.svg?branch=master
[coveralls]: https://coveralls.io/github/lonelyenvoy/python-memoization?branch=master
[repositorysvg]: https://img.shields.io/pypi/v/memoization
[repository]: https://pypi.org/project/memoization
[downloadssvg]: https://img.shields.io/pypi/dm/memoization
[prsvg]: https://img.shields.io/badge/pull_requests-welcome-blue.svg
[pr]: https://github.com/lonelyenvoy/python-memoization#contributing
[licensesvg]: https://img.shields.io/badge/license-MIT-blue.svg
[license]: https://github.com/lonelyenvoy/python-memoization/blob/master/LICENSE
[codacysvg]: https://api.codacy.com/project/badge/Grade/52c68fb9de6b4b149e77e8e173616db6
[codacy]: https://www.codacy.com/manual/petrinchor/python-memoization?utm_source=github.com&utm_medium=referral&utm_content=lonelyenvoy/python-memoization&utm_campaign=Badge_Grade
%package -n python3-memoization
Summary: A powerful caching library for Python, with TTL support and multiple algorithm options. (https://github.com/lonelyenvoy/python-memoization)
Provides: python-memoization
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-memoization
# python-memoization
[![Repository][repositorysvg]][repository] [![Build Status][travismaster]][travis] [![Codacy Badge][codacysvg]][codacy]
[![Coverage Status][coverallssvg]][coveralls] [![Downloads][downloadssvg]][repository]
<br>
[![PRs welcome][prsvg]][pr] [![License][licensesvg]][license] [![Supports Python][pythonsvg]][python]
A powerful caching library for Python, with TTL support and multiple algorithm options.
If you like this work, please [star](https://github.com/lonelyenvoy/python-memoization) it on GitHub.
## Why choose this library?
Perhaps you know about [```functools.lru_cache```](https://docs.python.org/3/library/functools.html#functools.lru_cache)
in Python 3, and you may be wondering why we are reinventing the wheel.
Well, actually not. This lib is based on ```functools```. Please find below the comparison with ```lru_cache```.
|Features|```functools.lru_cache```|```memoization```|
|--------|-------------------|-----------|
|Configurable max size|✔️|✔️|
|Thread safety|✔️|✔️|
|Flexible argument typing (typed & untyped)|✔️|Always typed|
|Cache statistics|✔️|✔️|
|LRU (Least Recently Used) as caching algorithm|✔️|✔️|
|LFU (Least Frequently Used) as caching algorithm|No support|✔️|
|FIFO (First In First Out) as caching algorithm|No support|✔️|
|Extensibility for new caching algorithms|No support|✔️|
|TTL (Time-To-Live) support|No support|✔️|
|Support for unhashable arguments (dict, list, etc.)|No support|✔️|
|Custom cache keys|No support|✔️|
|On-demand partial cache clearing|No support|✔️|
|Iterating through the cache|No support|✔️|
|Python version|3.2+|3.4+|
```memoization``` solves some drawbacks of ```functools.lru_cache```:
1. ```lru_cache``` does not support __unhashable types__, which means function arguments cannot contain dict or list.
```python
>>> from functools import lru_cache
>>> @lru_cache()
... def f(x): return x
...
>>> f([1, 2]) # unsupported
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
```
2. ```lru_cache``` is vulnerable to [__hash collision attack__](https://learncryptography.com/hash-functions/hash-collision-attack)
and can be hacked or compromised. Using this technique, attackers can make your program __unexpectedly slow__ by
feeding the cached function with certain cleverly designed inputs. However, in ```memoization```, caching is always
typed, which means ```f(3)``` and ```f(3.0)``` will be treated as different calls and cached separately. Also,
you can build your own cache key with a unique hashing strategy. These measures __prevents the attack__ from
happening (or at least makes it a lot harder).
```python
>>> hash((1,))
3430019387558
>>> hash(3430019387558.0) # two different arguments with an identical hash value
3430019387558
```
3. Unlike `lru_cache`, `memoization` is designed to be highly extensible, which make it easy for developers to add and integrate
__any caching algorithms__ (beyond FIFO, LRU and LFU) into this library. See [Contributing Guidance](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTING.md) for further detail.
## Installation
```bash
pip install -U memoization
```
## 1-Minute Tutorial
```python
from memoization import cached
@cached
def func(arg):
... # do something slow
```
Simple enough - the results of ```func()``` are cached.
Repetitive calls to ```func()``` with the same arguments run ```func()``` only once, enhancing performance.
>:warning:__WARNING:__ for functions with unhashable arguments, the default setting may not enable `memoization` to work properly. See [custom cache keys](https://github.com/lonelyenvoy/python-memoization#custom-cache-keys) section below for details.
## 15-Minute Tutorial
You will learn about the advanced features in the following tutorial, which enable you to customize `memoization` .
Configurable options include `ttl`, `max_size`, `algorithm`, `thread_safe`, `order_independent` and `custom_key_maker`.
### TTL (Time-To-Live)
```python
@cached(ttl=5) # the cache expires after 5 seconds
def expensive_db_query(user_id):
...
```
For impure functions, TTL (in second) will be a solution. This will be useful when the function returns resources that is valid only for a short time, e.g. fetching something from databases.
### Limited cache capacity
```python
@cached(max_size=128) # the cache holds no more than 128 items
def get_a_very_large_object(filename):
...
```
By default, if you don't specify ```max_size```, the cache can hold unlimited number of items.
When the cache is fully occupied, the former data will be overwritten by a certain algorithm described below.
### Choosing your caching algorithm
```python
from memoization import cached, CachingAlgorithmFlag
@cached(max_size=128, algorithm=CachingAlgorithmFlag.LFU) # the cache overwrites items using the LFU algorithm
def func(arg):
...
```
Possible values for ```algorithm``` are:
- `CachingAlgorithmFlag.LRU`: _Least Recently Used_ (default)
- `CachingAlgorithmFlag.LFU`: _Least Frequently Used_
- `CachingAlgorithmFlag.FIFO`: _First In First Out_
This option is valid only when a ```max_size``` is explicitly specified.
### Thread safe?
```python
@cached(thread_safe=False)
def func(arg):
...
```
```thread_safe``` is ```True``` by default. Setting it to ```False``` enhances performance.
### Order-independent cache key
By default, the following function calls will be treated differently and cached twice, which means the cache misses at the second call.
```python
func(a=1, b=1)
func(b=1, a=1)
```
You can avoid this behavior by passing an `order_independent` argument to the decorator, although it will slow down the performance a little bit.
```python
@cached(order_independent=True)
def func(**kwargs):
...
```
### Custom cache keys
Prior to memorize your function inputs and outputs (i.e. putting them into a cache), `memoization` needs to
build a __cache key__ using the inputs, so that the outputs can be retrieved later.
> By default, `memoization` tries to combine all your function
arguments and calculate its hash value using `hash()`. If it turns out that parts of your arguments are
unhashable, `memoization` will fall back to turning them into a string using `str()`. This behavior relies
on the assumption that the string exactly represents the internal state of the arguments, which is true for
built-in types.
However, this is not true for all objects. __If you pass objects which are
instances of non-built-in classes, sometimes you will need to override the default key-making procedure__,
because the `str()` function on these objects may not hold the correct information about their states.
Here are some suggestions. __Implementations of a valid key maker__:
- MUST be a function with the same signature as the cached function.
- MUST produce unique keys, which means two sets of different arguments always map to two different keys.
- MUST produce hashable keys, and a key is comparable with another key (`memoization` only needs to check for their equality).
- should compute keys efficiently and produce small objects as keys.
Example:
```python
def get_employee_id(employee):
return employee.id # returns a string or a integer
@cached(custom_key_maker=get_employee_id)
def calculate_performance(employee):
...
```
Note that writing a robust key maker function can be challenging in some situations. If you find it difficult,
feel free to ask for help by submitting an [issue](https://github.com/lonelyenvoy/python-memoization/issues).
### Knowing how well the cache is behaving
```python
>>> @cached
... def f(x): return x
...
>>> f.cache_info()
CacheInfo(hits=0, misses=0, current_size=0, max_size=None, algorithm=<CachingAlgorithmFlag.LRU: 2>, ttl=None, thread_safe=True, order_independent=False, use_custom_key=False)
```
With ```cache_info```, you can retrieve the number of ```hits``` and ```misses``` of the cache, and other information indicating the caching status.
- `hits`: the number of cache hits
- `misses`: the number of cache misses
- `current_size`: the number of items that were cached
- `max_size`: the maximum number of items that can be cached (user-specified)
- `algorithm`: caching algorithm (user-specified)
- `ttl`: Time-To-Live value (user-specified)
- `thread_safe`: whether the cache is thread safe (user-specified)
- `order_independent`: whether the cache is kwarg-order-independent (user-specified)
- `use_custom_key`: whether a custom key maker is used
### Other APIs
- Access the original undecorated function `f` by `f.__wrapped__`.
- Clear the cache by `f.cache_clear()`.
- Check whether the cache is empty by `f.cache_is_empty()`.
- Check whether the cache is full by `f.cache_is_full()`.
- Disable `SyntaxWarning` by `memoization.suppress_warnings()`.
## Advanced API References
<details>
<summary>Details</summary>
### Checking whether the cache contains something
#### cache_contains_argument(function_arguments, alive_only)
```
Return True if the cache contains a cached item with the specified function call arguments
:param function_arguments: Can be a list, a tuple or a dict.
- Full arguments: use a list to represent both positional arguments and keyword
arguments. The list contains two elements, a tuple (positional arguments) and
a dict (keyword arguments). For example,
f(1, 2, 3, a=4, b=5, c=6)
can be represented by:
[(1, 2, 3), {'a': 4, 'b': 5, 'c': 6}]
- Positional arguments only: when the arguments does not include keyword arguments,
a tuple can be used to represent positional arguments. For example,
f(1, 2, 3)
can be represented by:
(1, 2, 3)
- Keyword arguments only: when the arguments does not include positional arguments,
a dict can be used to represent keyword arguments. For example,
f(a=4, b=5, c=6)
can be represented by:
{'a': 4, 'b': 5, 'c': 6}
:param alive_only: Whether to check alive cache item only (default to True).
:return: True if the desired cached item is present, False otherwise.
```
#### cache_contains_result(return_value, alive_only)
```
Return True if the cache contains a cache item with the specified user function return value. O(n) time
complexity.
:param return_value: A return value coming from the user function.
:param alive_only: Whether to check alive cache item only (default to True).
:return: True if the desired cached item is present, False otherwise.
```
### Iterating through the cache
#### cache_arguments()
```
Get user function arguments of all alive cache elements
see also: cache_items()
Example:
@cached
def f(a, b, c, d):
...
f(1, 2, c=3, d=4)
for argument in f.cache_arguments():
print(argument) # ((1, 2), {'c': 3, 'd': 4})
:return: an iterable which iterates through a list of a tuple containing a tuple (positional arguments) and
a dict (keyword arguments)
```
#### cache_results()
```
Get user function return values of all alive cache elements
see also: cache_items()
Example:
@cached
def f(a):
return a
f('hello')
for result in f.cache_results():
print(result) # 'hello'
:return: an iterable which iterates through a list of user function result (of any type)
```
#### cache_items()
```
Get cache items, i.e. entries of all alive cache elements, in the form of (argument, result).
argument: a tuple containing a tuple (positional arguments) and a dict (keyword arguments).
result: a user function return value of any type.
see also: cache_arguments(), cache_results().
Example:
@cached
def f(a, b, c, d):
return 'the answer is ' + str(a)
f(1, 2, c=3, d=4)
for argument, result in f.cache_items():
print(argument) # ((1, 2), {'c': 3, 'd': 4})
print(result) # 'the answer is 1'
:return: an iterable which iterates through a list of (argument, result) entries
```
#### cache_for_each()
```
Perform the given action for each cache element in an order determined by the algorithm until all
elements have been processed or the action throws an error
:param consumer: an action function to process the cache elements. Must have 3 arguments:
def consumer(user_function_arguments, user_function_result, is_alive): ...
user_function_arguments is a tuple holding arguments in the form of (args, kwargs).
args is a tuple holding positional arguments.
kwargs is a dict holding keyword arguments.
for example, for a function: foo(a, b, c, d), calling it by: foo(1, 2, c=3, d=4)
user_function_arguments == ((1, 2), {'c': 3, 'd': 4})
user_function_result is a return value coming from the user function.
is_alive is a boolean value indicating whether the cache is still alive
(if a TTL is given).
```
### Removing something from the cache
#### cache_clear()
```
Clear the cache and its statistics information
```
#### cache_remove_if(predicate)
```
Remove all cache elements that satisfy the given predicate
:param predicate: a predicate function to judge whether the cache elements should be removed. Must
have 3 arguments, and returns True or False:
def consumer(user_function_arguments, user_function_result, is_alive): ...
user_function_arguments is a tuple holding arguments in the form of (args, kwargs).
args is a tuple holding positional arguments.
kwargs is a dict holding keyword arguments.
for example, for a function: foo(a, b, c, d), calling it by: foo(1, 2, c=3, d=4)
user_function_arguments == ((1, 2), {'c': 3, 'd': 4})
user_function_result is a return value coming from the user function.
is_alive is a boolean value indicating whether the cache is still alive
(if a TTL is given).
:return: True if at least one element is removed, False otherwise.
```
</details>
## Q&A
1. **Q: There are duplicated code in `memoization` and most of them can be eliminated by using another level of
abstraction (e.g. classes and multiple inheritance). Why not refactor?**
A: We would like to keep the code in a proper level of abstraction. However, these abstractions make it run slower.
As this is a caching library focusing on speed, we have to give up some elegance for better performance. Refactoring
is our future work.
2. **Q: I have submitted an issue and not received a reply for a long time. Anyone can help me?**
A: Sorry! We are not working full-time, but working voluntarily on this project, so you might experience some delay.
We appreciate your patience.
## Contributing
This project welcomes contributions from anyone.
- [Read Contributing Guidance](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTING.md) first.
- [Submit bugs](https://github.com/lonelyenvoy/python-memoization/issues) and help us verify fixes.
- [Submit pull requests](https://github.com/lonelyenvoy/python-memoization/pulls) for bug fixes and features and discuss existing proposals. Please make sure that your PR passes the tests in ```test.py```.
- [See contributors](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTORS.md) of this project.
## License
[The MIT License](https://github.com/lonelyenvoy/python-memoization/blob/master/LICENSE)
[pythonsvg]: https://img.shields.io/pypi/pyversions/memoization.svg
[python]: https://www.python.org
[travismaster]: https://travis-ci.com/lonelyenvoy/python-memoization.svg?branch=master
[travis]: https://travis-ci.com/lonelyenvoy/python-memoization
[coverallssvg]: https://coveralls.io/repos/github/lonelyenvoy/python-memoization/badge.svg?branch=master
[coveralls]: https://coveralls.io/github/lonelyenvoy/python-memoization?branch=master
[repositorysvg]: https://img.shields.io/pypi/v/memoization
[repository]: https://pypi.org/project/memoization
[downloadssvg]: https://img.shields.io/pypi/dm/memoization
[prsvg]: https://img.shields.io/badge/pull_requests-welcome-blue.svg
[pr]: https://github.com/lonelyenvoy/python-memoization#contributing
[licensesvg]: https://img.shields.io/badge/license-MIT-blue.svg
[license]: https://github.com/lonelyenvoy/python-memoization/blob/master/LICENSE
[codacysvg]: https://api.codacy.com/project/badge/Grade/52c68fb9de6b4b149e77e8e173616db6
[codacy]: https://www.codacy.com/manual/petrinchor/python-memoization?utm_source=github.com&utm_medium=referral&utm_content=lonelyenvoy/python-memoization&utm_campaign=Badge_Grade
%package help
Summary: Development documents and examples for memoization
Provides: python3-memoization-doc
%description help
# python-memoization
[![Repository][repositorysvg]][repository] [![Build Status][travismaster]][travis] [![Codacy Badge][codacysvg]][codacy]
[![Coverage Status][coverallssvg]][coveralls] [![Downloads][downloadssvg]][repository]
<br>
[![PRs welcome][prsvg]][pr] [![License][licensesvg]][license] [![Supports Python][pythonsvg]][python]
A powerful caching library for Python, with TTL support and multiple algorithm options.
If you like this work, please [star](https://github.com/lonelyenvoy/python-memoization) it on GitHub.
## Why choose this library?
Perhaps you know about [```functools.lru_cache```](https://docs.python.org/3/library/functools.html#functools.lru_cache)
in Python 3, and you may be wondering why we are reinventing the wheel.
Well, actually not. This lib is based on ```functools```. Please find below the comparison with ```lru_cache```.
|Features|```functools.lru_cache```|```memoization```|
|--------|-------------------|-----------|
|Configurable max size|✔️|✔️|
|Thread safety|✔️|✔️|
|Flexible argument typing (typed & untyped)|✔️|Always typed|
|Cache statistics|✔️|✔️|
|LRU (Least Recently Used) as caching algorithm|✔️|✔️|
|LFU (Least Frequently Used) as caching algorithm|No support|✔️|
|FIFO (First In First Out) as caching algorithm|No support|✔️|
|Extensibility for new caching algorithms|No support|✔️|
|TTL (Time-To-Live) support|No support|✔️|
|Support for unhashable arguments (dict, list, etc.)|No support|✔️|
|Custom cache keys|No support|✔️|
|On-demand partial cache clearing|No support|✔️|
|Iterating through the cache|No support|✔️|
|Python version|3.2+|3.4+|
```memoization``` solves some drawbacks of ```functools.lru_cache```:
1. ```lru_cache``` does not support __unhashable types__, which means function arguments cannot contain dict or list.
```python
>>> from functools import lru_cache
>>> @lru_cache()
... def f(x): return x
...
>>> f([1, 2]) # unsupported
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unhashable type: 'list'
```
2. ```lru_cache``` is vulnerable to [__hash collision attack__](https://learncryptography.com/hash-functions/hash-collision-attack)
and can be hacked or compromised. Using this technique, attackers can make your program __unexpectedly slow__ by
feeding the cached function with certain cleverly designed inputs. However, in ```memoization```, caching is always
typed, which means ```f(3)``` and ```f(3.0)``` will be treated as different calls and cached separately. Also,
you can build your own cache key with a unique hashing strategy. These measures __prevents the attack__ from
happening (or at least makes it a lot harder).
```python
>>> hash((1,))
3430019387558
>>> hash(3430019387558.0) # two different arguments with an identical hash value
3430019387558
```
3. Unlike `lru_cache`, `memoization` is designed to be highly extensible, which make it easy for developers to add and integrate
__any caching algorithms__ (beyond FIFO, LRU and LFU) into this library. See [Contributing Guidance](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTING.md) for further detail.
## Installation
```bash
pip install -U memoization
```
## 1-Minute Tutorial
```python
from memoization import cached
@cached
def func(arg):
... # do something slow
```
Simple enough - the results of ```func()``` are cached.
Repetitive calls to ```func()``` with the same arguments run ```func()``` only once, enhancing performance.
>:warning:__WARNING:__ for functions with unhashable arguments, the default setting may not enable `memoization` to work properly. See [custom cache keys](https://github.com/lonelyenvoy/python-memoization#custom-cache-keys) section below for details.
## 15-Minute Tutorial
You will learn about the advanced features in the following tutorial, which enable you to customize `memoization` .
Configurable options include `ttl`, `max_size`, `algorithm`, `thread_safe`, `order_independent` and `custom_key_maker`.
### TTL (Time-To-Live)
```python
@cached(ttl=5) # the cache expires after 5 seconds
def expensive_db_query(user_id):
...
```
For impure functions, TTL (in second) will be a solution. This will be useful when the function returns resources that is valid only for a short time, e.g. fetching something from databases.
### Limited cache capacity
```python
@cached(max_size=128) # the cache holds no more than 128 items
def get_a_very_large_object(filename):
...
```
By default, if you don't specify ```max_size```, the cache can hold unlimited number of items.
When the cache is fully occupied, the former data will be overwritten by a certain algorithm described below.
### Choosing your caching algorithm
```python
from memoization import cached, CachingAlgorithmFlag
@cached(max_size=128, algorithm=CachingAlgorithmFlag.LFU) # the cache overwrites items using the LFU algorithm
def func(arg):
...
```
Possible values for ```algorithm``` are:
- `CachingAlgorithmFlag.LRU`: _Least Recently Used_ (default)
- `CachingAlgorithmFlag.LFU`: _Least Frequently Used_
- `CachingAlgorithmFlag.FIFO`: _First In First Out_
This option is valid only when a ```max_size``` is explicitly specified.
### Thread safe?
```python
@cached(thread_safe=False)
def func(arg):
...
```
```thread_safe``` is ```True``` by default. Setting it to ```False``` enhances performance.
### Order-independent cache key
By default, the following function calls will be treated differently and cached twice, which means the cache misses at the second call.
```python
func(a=1, b=1)
func(b=1, a=1)
```
You can avoid this behavior by passing an `order_independent` argument to the decorator, although it will slow down the performance a little bit.
```python
@cached(order_independent=True)
def func(**kwargs):
...
```
### Custom cache keys
Prior to memorize your function inputs and outputs (i.e. putting them into a cache), `memoization` needs to
build a __cache key__ using the inputs, so that the outputs can be retrieved later.
> By default, `memoization` tries to combine all your function
arguments and calculate its hash value using `hash()`. If it turns out that parts of your arguments are
unhashable, `memoization` will fall back to turning them into a string using `str()`. This behavior relies
on the assumption that the string exactly represents the internal state of the arguments, which is true for
built-in types.
However, this is not true for all objects. __If you pass objects which are
instances of non-built-in classes, sometimes you will need to override the default key-making procedure__,
because the `str()` function on these objects may not hold the correct information about their states.
Here are some suggestions. __Implementations of a valid key maker__:
- MUST be a function with the same signature as the cached function.
- MUST produce unique keys, which means two sets of different arguments always map to two different keys.
- MUST produce hashable keys, and a key is comparable with another key (`memoization` only needs to check for their equality).
- should compute keys efficiently and produce small objects as keys.
Example:
```python
def get_employee_id(employee):
return employee.id # returns a string or a integer
@cached(custom_key_maker=get_employee_id)
def calculate_performance(employee):
...
```
Note that writing a robust key maker function can be challenging in some situations. If you find it difficult,
feel free to ask for help by submitting an [issue](https://github.com/lonelyenvoy/python-memoization/issues).
### Knowing how well the cache is behaving
```python
>>> @cached
... def f(x): return x
...
>>> f.cache_info()
CacheInfo(hits=0, misses=0, current_size=0, max_size=None, algorithm=<CachingAlgorithmFlag.LRU: 2>, ttl=None, thread_safe=True, order_independent=False, use_custom_key=False)
```
With ```cache_info```, you can retrieve the number of ```hits``` and ```misses``` of the cache, and other information indicating the caching status.
- `hits`: the number of cache hits
- `misses`: the number of cache misses
- `current_size`: the number of items that were cached
- `max_size`: the maximum number of items that can be cached (user-specified)
- `algorithm`: caching algorithm (user-specified)
- `ttl`: Time-To-Live value (user-specified)
- `thread_safe`: whether the cache is thread safe (user-specified)
- `order_independent`: whether the cache is kwarg-order-independent (user-specified)
- `use_custom_key`: whether a custom key maker is used
### Other APIs
- Access the original undecorated function `f` by `f.__wrapped__`.
- Clear the cache by `f.cache_clear()`.
- Check whether the cache is empty by `f.cache_is_empty()`.
- Check whether the cache is full by `f.cache_is_full()`.
- Disable `SyntaxWarning` by `memoization.suppress_warnings()`.
## Advanced API References
<details>
<summary>Details</summary>
### Checking whether the cache contains something
#### cache_contains_argument(function_arguments, alive_only)
```
Return True if the cache contains a cached item with the specified function call arguments
:param function_arguments: Can be a list, a tuple or a dict.
- Full arguments: use a list to represent both positional arguments and keyword
arguments. The list contains two elements, a tuple (positional arguments) and
a dict (keyword arguments). For example,
f(1, 2, 3, a=4, b=5, c=6)
can be represented by:
[(1, 2, 3), {'a': 4, 'b': 5, 'c': 6}]
- Positional arguments only: when the arguments does not include keyword arguments,
a tuple can be used to represent positional arguments. For example,
f(1, 2, 3)
can be represented by:
(1, 2, 3)
- Keyword arguments only: when the arguments does not include positional arguments,
a dict can be used to represent keyword arguments. For example,
f(a=4, b=5, c=6)
can be represented by:
{'a': 4, 'b': 5, 'c': 6}
:param alive_only: Whether to check alive cache item only (default to True).
:return: True if the desired cached item is present, False otherwise.
```
#### cache_contains_result(return_value, alive_only)
```
Return True if the cache contains a cache item with the specified user function return value. O(n) time
complexity.
:param return_value: A return value coming from the user function.
:param alive_only: Whether to check alive cache item only (default to True).
:return: True if the desired cached item is present, False otherwise.
```
### Iterating through the cache
#### cache_arguments()
```
Get user function arguments of all alive cache elements
see also: cache_items()
Example:
@cached
def f(a, b, c, d):
...
f(1, 2, c=3, d=4)
for argument in f.cache_arguments():
print(argument) # ((1, 2), {'c': 3, 'd': 4})
:return: an iterable which iterates through a list of a tuple containing a tuple (positional arguments) and
a dict (keyword arguments)
```
#### cache_results()
```
Get user function return values of all alive cache elements
see also: cache_items()
Example:
@cached
def f(a):
return a
f('hello')
for result in f.cache_results():
print(result) # 'hello'
:return: an iterable which iterates through a list of user function result (of any type)
```
#### cache_items()
```
Get cache items, i.e. entries of all alive cache elements, in the form of (argument, result).
argument: a tuple containing a tuple (positional arguments) and a dict (keyword arguments).
result: a user function return value of any type.
see also: cache_arguments(), cache_results().
Example:
@cached
def f(a, b, c, d):
return 'the answer is ' + str(a)
f(1, 2, c=3, d=4)
for argument, result in f.cache_items():
print(argument) # ((1, 2), {'c': 3, 'd': 4})
print(result) # 'the answer is 1'
:return: an iterable which iterates through a list of (argument, result) entries
```
#### cache_for_each()
```
Perform the given action for each cache element in an order determined by the algorithm until all
elements have been processed or the action throws an error
:param consumer: an action function to process the cache elements. Must have 3 arguments:
def consumer(user_function_arguments, user_function_result, is_alive): ...
user_function_arguments is a tuple holding arguments in the form of (args, kwargs).
args is a tuple holding positional arguments.
kwargs is a dict holding keyword arguments.
for example, for a function: foo(a, b, c, d), calling it by: foo(1, 2, c=3, d=4)
user_function_arguments == ((1, 2), {'c': 3, 'd': 4})
user_function_result is a return value coming from the user function.
is_alive is a boolean value indicating whether the cache is still alive
(if a TTL is given).
```
### Removing something from the cache
#### cache_clear()
```
Clear the cache and its statistics information
```
#### cache_remove_if(predicate)
```
Remove all cache elements that satisfy the given predicate
:param predicate: a predicate function to judge whether the cache elements should be removed. Must
have 3 arguments, and returns True or False:
def consumer(user_function_arguments, user_function_result, is_alive): ...
user_function_arguments is a tuple holding arguments in the form of (args, kwargs).
args is a tuple holding positional arguments.
kwargs is a dict holding keyword arguments.
for example, for a function: foo(a, b, c, d), calling it by: foo(1, 2, c=3, d=4)
user_function_arguments == ((1, 2), {'c': 3, 'd': 4})
user_function_result is a return value coming from the user function.
is_alive is a boolean value indicating whether the cache is still alive
(if a TTL is given).
:return: True if at least one element is removed, False otherwise.
```
</details>
## Q&A
1. **Q: There are duplicated code in `memoization` and most of them can be eliminated by using another level of
abstraction (e.g. classes and multiple inheritance). Why not refactor?**
A: We would like to keep the code in a proper level of abstraction. However, these abstractions make it run slower.
As this is a caching library focusing on speed, we have to give up some elegance for better performance. Refactoring
is our future work.
2. **Q: I have submitted an issue and not received a reply for a long time. Anyone can help me?**
A: Sorry! We are not working full-time, but working voluntarily on this project, so you might experience some delay.
We appreciate your patience.
## Contributing
This project welcomes contributions from anyone.
- [Read Contributing Guidance](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTING.md) first.
- [Submit bugs](https://github.com/lonelyenvoy/python-memoization/issues) and help us verify fixes.
- [Submit pull requests](https://github.com/lonelyenvoy/python-memoization/pulls) for bug fixes and features and discuss existing proposals. Please make sure that your PR passes the tests in ```test.py```.
- [See contributors](https://github.com/lonelyenvoy/python-memoization/blob/master/CONTRIBUTORS.md) of this project.
## License
[The MIT License](https://github.com/lonelyenvoy/python-memoization/blob/master/LICENSE)
[pythonsvg]: https://img.shields.io/pypi/pyversions/memoization.svg
[python]: https://www.python.org
[travismaster]: https://travis-ci.com/lonelyenvoy/python-memoization.svg?branch=master
[travis]: https://travis-ci.com/lonelyenvoy/python-memoization
[coverallssvg]: https://coveralls.io/repos/github/lonelyenvoy/python-memoization/badge.svg?branch=master
[coveralls]: https://coveralls.io/github/lonelyenvoy/python-memoization?branch=master
[repositorysvg]: https://img.shields.io/pypi/v/memoization
[repository]: https://pypi.org/project/memoization
[downloadssvg]: https://img.shields.io/pypi/dm/memoization
[prsvg]: https://img.shields.io/badge/pull_requests-welcome-blue.svg
[pr]: https://github.com/lonelyenvoy/python-memoization#contributing
[licensesvg]: https://img.shields.io/badge/license-MIT-blue.svg
[license]: https://github.com/lonelyenvoy/python-memoization/blob/master/LICENSE
[codacysvg]: https://api.codacy.com/project/badge/Grade/52c68fb9de6b4b149e77e8e173616db6
[codacy]: https://www.codacy.com/manual/petrinchor/python-memoization?utm_source=github.com&utm_medium=referral&utm_content=lonelyenvoy/python-memoization&utm_campaign=Badge_Grade
%prep
%autosetup -n memoization-0.4.0
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-memoization -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon Apr 10 2023 Python_Bot <Python_Bot@openeuler.org> - 0.4.0-1
- Package Spec generated
|