1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
|
%global _empty_manifest_terminate_build 0
Name: python-metalcompute
Version: 0.2.4
Release: 1
Summary: A python library to run metal compute kernels on macOS
License: MIT License
URL: https://github.com/baldand/py-metal-compute
Source0: https://mirrors.nju.edu.cn/pypi/web/packages/84/af/5412f208b516cf3dc718abf583b6cb88b3bd35d0ac9c5e2c1c7e1160454f/metalcompute-0.2.4.tar.gz
BuildArch: noarch
%description
# metalcompute for Python

A python library to run metal compute kernels on macOS >= 11
## Installations
Install latest stable release from PyPI:
```
> python3 -m pip install metalcompute
```
Install latest unstable version from Github:
```
> python3 -m pip install git+https://github.com/baldand/py-metal-compute.git
```
Install locally from source:
```
> python3 -m pip install .
```
## Basic test
Example execution from M1-based Mac running macOS 12:
```
> python3 tests/basic.py
Calculating sin of 1234567 values
Expected value: 0.9805107116699219 Received value: 0.9807852506637573
Metal compute took: 0.0040209293365478516 s
Reference compute took: 0.1068720817565918 s
```
## Interface
```
import metalcompute as mc
devices = mc.get_devices()
# Get list of available Metal devices
dev = mc.Device()
# Call before use. Will open default Metal device
# or to pick a specific device:
# mc.Device(device_index)
program = """
#include <metal_stdlib>
using namespace metal;
kernel void test(const device float *in [[ buffer(0) ]],
device float *out [[ buffer(1) ]],
uint id [[ thread_position_in_grid ]]) {
out[id] = sin(in[id]);
}
"""
function_name = "test"
kernel_fn = dev.kernel(program).function(function_name)
# Will raise exception with details if metal kernel has errors
buf_0 = array('f',[1.0,3.14159]) # Any python buffer object
buf_n = dev.buffer(out_size)
# Allocate metal buffers for input and output (must be compatible with kernel)
# Input buffers can be dev.buffer or python buffers (will be copied)
# Output buffers must be dev.buffer
# Buffer objects support python buffer protocol
# Can be modified or read using e.g. memoryview, numpy.frombuffer
kernel_fn(kernel_call_count, buf_0, ..., buf_n)
# Run the kernel once with supplied input data,
# filling supplied output data
# Specify number of kernel calls
# Will block until data available
handle = kernel_fn(kernel_call_count, buf_0, ..., buf_n)
# Run the kernel once,
# Specify number of kernel calls
# Supply all needed buffers
# Will return immediately, before kernel runs,
# allowing additional kernels to be queued
# Do not modify or read buffers until kernel completed!
del handle
# Block until previously queued kernel has completed
```
## Examples
### Measure TFLOPS of GPU
```
> metalcompute-measure
Using device: Apple M1 (unified memory=True)
Running compute intensive Metal kernel to measure TFLOPS...
Estimated GPU TFLOPS: 2.53236
Running compute intensive Metal kernel to measure data transfer rate...
Data transfer rate: 58.7291 GB/s
```
### Render a 3D image with raymarching
```
# Usage: metalcompute-raymarch [-width <width>] [-height <height>] [-outname <output image file: PNG, JPG>]
> metalcompute-raymarch.py -width 1024 -height 1024 -outname raymarch.jpg
Render took 0.0119569s
```

### Mandelbrot set
```
# Usage: metalcompute-mandelbrot [-width <width>] [-height <height>] [-outname <output image file: PNG, JPG>]
> metalcompute-mandelbrot
Rendering mandelbrot set using Metal compute, res:4096x4096, iters:8192
Render took 0.401446s
Writing image to mandelbrot.png
Image encoding took 1.35182s
```

### Livecoding visual kernels in VSCode
There is an example script to allow livecoding of visual metal kernels entirely within VSCode using a localhost http server to render frames.
It also includes syntax error highlighting in the editor.
See [livemetal.py](examples/livecode)
## Status
This is a preview version.
%package -n python3-metalcompute
Summary: A python library to run metal compute kernels on macOS
Provides: python-metalcompute
BuildRequires: python3-devel
BuildRequires: python3-setuptools
BuildRequires: python3-pip
%description -n python3-metalcompute
# metalcompute for Python

A python library to run metal compute kernels on macOS >= 11
## Installations
Install latest stable release from PyPI:
```
> python3 -m pip install metalcompute
```
Install latest unstable version from Github:
```
> python3 -m pip install git+https://github.com/baldand/py-metal-compute.git
```
Install locally from source:
```
> python3 -m pip install .
```
## Basic test
Example execution from M1-based Mac running macOS 12:
```
> python3 tests/basic.py
Calculating sin of 1234567 values
Expected value: 0.9805107116699219 Received value: 0.9807852506637573
Metal compute took: 0.0040209293365478516 s
Reference compute took: 0.1068720817565918 s
```
## Interface
```
import metalcompute as mc
devices = mc.get_devices()
# Get list of available Metal devices
dev = mc.Device()
# Call before use. Will open default Metal device
# or to pick a specific device:
# mc.Device(device_index)
program = """
#include <metal_stdlib>
using namespace metal;
kernel void test(const device float *in [[ buffer(0) ]],
device float *out [[ buffer(1) ]],
uint id [[ thread_position_in_grid ]]) {
out[id] = sin(in[id]);
}
"""
function_name = "test"
kernel_fn = dev.kernel(program).function(function_name)
# Will raise exception with details if metal kernel has errors
buf_0 = array('f',[1.0,3.14159]) # Any python buffer object
buf_n = dev.buffer(out_size)
# Allocate metal buffers for input and output (must be compatible with kernel)
# Input buffers can be dev.buffer or python buffers (will be copied)
# Output buffers must be dev.buffer
# Buffer objects support python buffer protocol
# Can be modified or read using e.g. memoryview, numpy.frombuffer
kernel_fn(kernel_call_count, buf_0, ..., buf_n)
# Run the kernel once with supplied input data,
# filling supplied output data
# Specify number of kernel calls
# Will block until data available
handle = kernel_fn(kernel_call_count, buf_0, ..., buf_n)
# Run the kernel once,
# Specify number of kernel calls
# Supply all needed buffers
# Will return immediately, before kernel runs,
# allowing additional kernels to be queued
# Do not modify or read buffers until kernel completed!
del handle
# Block until previously queued kernel has completed
```
## Examples
### Measure TFLOPS of GPU
```
> metalcompute-measure
Using device: Apple M1 (unified memory=True)
Running compute intensive Metal kernel to measure TFLOPS...
Estimated GPU TFLOPS: 2.53236
Running compute intensive Metal kernel to measure data transfer rate...
Data transfer rate: 58.7291 GB/s
```
### Render a 3D image with raymarching
```
# Usage: metalcompute-raymarch [-width <width>] [-height <height>] [-outname <output image file: PNG, JPG>]
> metalcompute-raymarch.py -width 1024 -height 1024 -outname raymarch.jpg
Render took 0.0119569s
```

### Mandelbrot set
```
# Usage: metalcompute-mandelbrot [-width <width>] [-height <height>] [-outname <output image file: PNG, JPG>]
> metalcompute-mandelbrot
Rendering mandelbrot set using Metal compute, res:4096x4096, iters:8192
Render took 0.401446s
Writing image to mandelbrot.png
Image encoding took 1.35182s
```

### Livecoding visual kernels in VSCode
There is an example script to allow livecoding of visual metal kernels entirely within VSCode using a localhost http server to render frames.
It also includes syntax error highlighting in the editor.
See [livemetal.py](examples/livecode)
## Status
This is a preview version.
%package help
Summary: Development documents and examples for metalcompute
Provides: python3-metalcompute-doc
%description help
# metalcompute for Python

A python library to run metal compute kernels on macOS >= 11
## Installations
Install latest stable release from PyPI:
```
> python3 -m pip install metalcompute
```
Install latest unstable version from Github:
```
> python3 -m pip install git+https://github.com/baldand/py-metal-compute.git
```
Install locally from source:
```
> python3 -m pip install .
```
## Basic test
Example execution from M1-based Mac running macOS 12:
```
> python3 tests/basic.py
Calculating sin of 1234567 values
Expected value: 0.9805107116699219 Received value: 0.9807852506637573
Metal compute took: 0.0040209293365478516 s
Reference compute took: 0.1068720817565918 s
```
## Interface
```
import metalcompute as mc
devices = mc.get_devices()
# Get list of available Metal devices
dev = mc.Device()
# Call before use. Will open default Metal device
# or to pick a specific device:
# mc.Device(device_index)
program = """
#include <metal_stdlib>
using namespace metal;
kernel void test(const device float *in [[ buffer(0) ]],
device float *out [[ buffer(1) ]],
uint id [[ thread_position_in_grid ]]) {
out[id] = sin(in[id]);
}
"""
function_name = "test"
kernel_fn = dev.kernel(program).function(function_name)
# Will raise exception with details if metal kernel has errors
buf_0 = array('f',[1.0,3.14159]) # Any python buffer object
buf_n = dev.buffer(out_size)
# Allocate metal buffers for input and output (must be compatible with kernel)
# Input buffers can be dev.buffer or python buffers (will be copied)
# Output buffers must be dev.buffer
# Buffer objects support python buffer protocol
# Can be modified or read using e.g. memoryview, numpy.frombuffer
kernel_fn(kernel_call_count, buf_0, ..., buf_n)
# Run the kernel once with supplied input data,
# filling supplied output data
# Specify number of kernel calls
# Will block until data available
handle = kernel_fn(kernel_call_count, buf_0, ..., buf_n)
# Run the kernel once,
# Specify number of kernel calls
# Supply all needed buffers
# Will return immediately, before kernel runs,
# allowing additional kernels to be queued
# Do not modify or read buffers until kernel completed!
del handle
# Block until previously queued kernel has completed
```
## Examples
### Measure TFLOPS of GPU
```
> metalcompute-measure
Using device: Apple M1 (unified memory=True)
Running compute intensive Metal kernel to measure TFLOPS...
Estimated GPU TFLOPS: 2.53236
Running compute intensive Metal kernel to measure data transfer rate...
Data transfer rate: 58.7291 GB/s
```
### Render a 3D image with raymarching
```
# Usage: metalcompute-raymarch [-width <width>] [-height <height>] [-outname <output image file: PNG, JPG>]
> metalcompute-raymarch.py -width 1024 -height 1024 -outname raymarch.jpg
Render took 0.0119569s
```

### Mandelbrot set
```
# Usage: metalcompute-mandelbrot [-width <width>] [-height <height>] [-outname <output image file: PNG, JPG>]
> metalcompute-mandelbrot
Rendering mandelbrot set using Metal compute, res:4096x4096, iters:8192
Render took 0.401446s
Writing image to mandelbrot.png
Image encoding took 1.35182s
```

### Livecoding visual kernels in VSCode
There is an example script to allow livecoding of visual metal kernels entirely within VSCode using a localhost http server to render frames.
It also includes syntax error highlighting in the editor.
See [livemetal.py](examples/livecode)
## Status
This is a preview version.
%prep
%autosetup -n metalcompute-0.2.4
%build
%py3_build
%install
%py3_install
install -d -m755 %{buildroot}/%{_pkgdocdir}
if [ -d doc ]; then cp -arf doc %{buildroot}/%{_pkgdocdir}; fi
if [ -d docs ]; then cp -arf docs %{buildroot}/%{_pkgdocdir}; fi
if [ -d example ]; then cp -arf example %{buildroot}/%{_pkgdocdir}; fi
if [ -d examples ]; then cp -arf examples %{buildroot}/%{_pkgdocdir}; fi
pushd %{buildroot}
if [ -d usr/lib ]; then
find usr/lib -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/lib64 ]; then
find usr/lib64 -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/bin ]; then
find usr/bin -type f -printf "/%h/%f\n" >> filelist.lst
fi
if [ -d usr/sbin ]; then
find usr/sbin -type f -printf "/%h/%f\n" >> filelist.lst
fi
touch doclist.lst
if [ -d usr/share/man ]; then
find usr/share/man -type f -printf "/%h/%f.gz\n" >> doclist.lst
fi
popd
mv %{buildroot}/filelist.lst .
mv %{buildroot}/doclist.lst .
%files -n python3-metalcompute -f filelist.lst
%dir %{python3_sitelib}/*
%files help -f doclist.lst
%{_docdir}/*
%changelog
* Mon May 15 2023 Python_Bot <Python_Bot@openeuler.org> - 0.2.4-1
- Package Spec generated
|